UNIVERSIDAD PERUANA UNIÓN
FACULTAD DE INGENIERÍA Y ARQUITECTURA

E.P. Ingeniería de Alimentos

"DETERMINACIÓN DE PARÁMETROS DE ELABORACIÓN DE TUNTA PROBIOTICA EMPLEANDO Saccharomyces boulardii"

Tesis presentada para optar el título de Ingeniero de Alimentos:

Autor
Bach. Martha Rodriguez Molina

Asesor
Ing. Alex Danny Chambi Rodriguez

Mayo 2015
AUTOR: Martha Rodriguez Molina
TITULO: “Determinación de parámetros de elaboración de Tunta probiótica empleando Saccharomyces boulardii”
PUBLICACIÓN: Juliaca, 2016
DESCRIPCIÓN: 78h.: Figura, tablas
NOTA: Incluye Bibliografía
ASESOR: Ing. Alex Danny Chambi Rodriguez
PALABRAS CLAVE: Probiótico, Tunta, Taguchi
Dedicatoria

El presente proyecto de investigación lo dedico en primer lugar a Dios, seguidamente a mi hijo y a mis familiares por su apoyo incondicional, paciencia y confianza puesta en mi persona, porque de lo contrario hubiese sido mucho más difícil de alcanzar mis metas y objetivos y la realización de esta investigación.
Agradecimientos

Nuestros más sinceros y eternos agradecimientos a:

- Dios todo poderoso, por permitir lograr este paso en mi vida, porque sin Dios no se logra nada.
- A mí estimado orientador Ing. Alex Danny Chambi Rodríguez, por su dedicación a lo largo de la ejecución de este proyecto.
- A los docentes que de alguna manera hicieron posible el desarrollo de este trabajo: Dr. Augusto Pumacahua Ramos, Ing. Ana Mónica Torres Jiménez, Ing. Enrique Mamani Cuela, Ing. Nancy Curasi Rafael
- A mi familia e hijo por su apoyo incondicional en todos estos 5 años de estudios.
- A todos aquellos que de alguna u otra manera influyeron y ayudaron a culminar y alcanzar los objetivos trazados.
INDICE GENERAL

CAPITULO I ..1
INTRODUCCIÓN ..13
Objetivos ..15
1.1. Objetivo General ...15
1.1.2. Objetivos Específicos ..15
CAPITULO II ..16
MARCO TEÓRICO ..16
2.1. Base conceptual ..16
2.2. Tunta (Solanum tuberosum) ..16
1.1.1. Levadura Saccharomyces boulardii ...18
2.3. Base teórica ..20
2.3.1. Crecimiento microbiano ...20
2.3.2. Modelos primarios ..24
2.3.3. Modelos secundarios ..25
2.2.3. Modelos terciarios ...25
2.2.4. Cinética microbiano ..26
1.1.3. Cinética de crecimiento de un cultivo discontinuo ...27
1.1.4. Cinética de crecimiento en un cultivo continúo. ..27
1.1.5. Alimentos Prebióticos ..28
1.1.6. Estadística diseño Taguchi ...31
1.1.7. Evaluación sensorial ...33
1.1.8. Análisis de los alimentos ...36
CAPITULO III ...39
MATERIALES Y MÉTODOS ..39
2.1. Lugar de ejecución ...39
2.2. Materiales y equipos ...39
2.2.1. Materia prima ..39
2.2.2. Materiales ..39
2.2.3. Equipos .. 40
2.3. Metodología experimental ... 40
2.4. Descripción del diagrama de flujo .. 42
2.4.1. Metodología de determinación de la curva de crecimiento microbiano 43
2.4.2. Método estadístico taguchi ... 44
2.4.3. Metodología para el análisis por escala hedónica para la aceptabilidad 45
2.4.4. Análisis fisicoquímicos .. 45
2.4.5. Análisis microbiológico ... 48
CAPÍTULO IV .. 49
RESULTADOS Y DISCUSIONES ... 49
3.1. Determinación curva de crecimiento microbiano de *Saccharomyces boulardii* en tunta sumergida en solución salina peptonada y agua destilada .. 49
3.2. Influencia de parámetros en la elaboración de Tunta probiótica 56
3.3. Optimización del producto final a través del Análisis Sensorial y el método Taguchi ... 57
3.3.1 Textura ... 58
3.3.2 Masticabilidad ... 58
3.3.3 Aceptabilidad .. 59
3.4. Análisis Fisicoquímicos ... 59
CAPÍTULO V .. 60
CONCLUSIONES Y RECOMENDACIONES .. 60
4.1. Conclusiones ... 60
4.2. Recomendaciones: ... 61
REFERENCIAS ... 62
Índice de Figuras

Figura 1. *Saccharomyces boulardii* .. 19
Figura 2. Curva de crecimiento típica de una levadura .. 21
Figura 3. Matriz de diseño de Taguchi .. 31
Figura 4. Diagrama de flujo Determinación de parámetros de tunta con

Saccharomyces boulardii .. 41
Figura 5. Cinética de crecimiento de *Saccharomyces boulardii* en distintos medio de cultivo. 49
Figura 6. Presencia de *Saccharomyces boulardii* luego de proceso de fermentación de 24 horas
en variedades estudiadas, papa variedad negra y papa variedad chaska.. 54
Figura 7. Determinación de parámetros de elaboración de tunta probiótica empleando el
método Taguchi. ... 56
Índice de Tablas

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1</td>
<td>Características básicas que identifican la calidad de la Tunta</td>
<td>17</td>
</tr>
<tr>
<td>Tabla 2</td>
<td>Composición nutricional de la Tunta 100 gramos</td>
<td>18</td>
</tr>
<tr>
<td>Tabla 3</td>
<td>Variables aplicadas en el Diseño de Taguchi</td>
<td>44</td>
</tr>
<tr>
<td>Tabla 4</td>
<td>Determinación de parámetros de elaboración de tunta probiótica por el método Taguchi</td>
<td>44</td>
</tr>
<tr>
<td>Tabla 5</td>
<td>Escala empleado en evaluación sensorial</td>
<td>45</td>
</tr>
<tr>
<td>Tabla 6</td>
<td>Datos estadísticos de crecimiento microbiano de Saccharomyces boulardii</td>
<td>51</td>
</tr>
<tr>
<td>Tabla 7</td>
<td>ANOVA de crecimiento microbiano en función al tiempo</td>
<td>52</td>
</tr>
<tr>
<td>Tabla 8</td>
<td>ANOVA de crecimiento microbiano en función a la escala logarítmica (Log10)</td>
<td>53</td>
</tr>
<tr>
<td>Tabla 9</td>
<td>Monitoreo de °Brix, Acidez y pH.</td>
<td>55</td>
</tr>
<tr>
<td>Tabla 10</td>
<td>Recuento en placa de Mohos y Levaduras.</td>
<td>55</td>
</tr>
<tr>
<td>Tabla 11</td>
<td>ANOVA de parámetros evaluados en la elaboración de tunta probiótica</td>
<td>57</td>
</tr>
<tr>
<td>Tabla 12</td>
<td>ANOVA para la variable de textura</td>
<td>58</td>
</tr>
<tr>
<td>Tabla 13</td>
<td>ANOVA para la variable de Masticabilidad</td>
<td>58</td>
</tr>
<tr>
<td>Tabla 14</td>
<td>NOVA para la variable de Aceptabilidad</td>
<td>59</td>
</tr>
<tr>
<td>Tabla 15</td>
<td>Análisis proximal de la tunta de dos variedades: Negra y Chaska</td>
<td>59</td>
</tr>
</tbody>
</table>
Índice de Anexos

Anexo 1. Determinación de pH AOAC 32.018, 1984.. 69
Anexo 2. Determinación de acidez AOAC, 947.05, 1990 .. 70
Anexo 3. Determinación de Brix AOAC, 932.12 1990 ... 71
Anexo 5. Determinación de Fibra AOAC, 978.10 .. 74
Anexo 8. Diluciones de Agar para análisis microbiológico en la variedad Negra............... 77
Anexo 9. Diluciones de agar para análisis microbiológico en la variedad Chaska............. 77
Anexo 10. Incubación de Saccharomyces boulardii en las variedades Negra y Chaska 78
Anexo 11. Comparación de crecimiento microbiológico en la variedad Chaska 78
Anexo 12. Comparación de crecimiento microbiológico en la variedad Negra 79
Anexo 13. Conteo de UFC en las placas .. 79
Anexo 14. Conteo de UFC en las placas con el contador de colonias 80
Anexo 15. Conteo en cámara de neubauer de la tunta Chaska... 80
Anexo 16. Conteo en cámara de neubauer de la tunta Negra... 81
Anexo 17. Producto final variedad Negra .. 81
Anexo 18. Producto final variedad Negra .. 82
Anexo 19. Producto final variedad Negra .. 82
Anexo 20. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra... 83

Anexo 21. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra... 83

Anexo 22. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra... 84

Anexo 23. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra... 84

Anexo 24. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra y Chaska... 85

Anexo 25. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra y Chaska... 85

Anexo 26. Conteo de mohos y levaduras de variedad Negra... 86

Anexo 27. Conteo de mohos y levaduras de variedad Negra... 86

Anexo 28. Conteo de mohos y levaduras de variedad Negra... 87

Anexo 29. Conteo de mohos y levaduras de variedad Chaska... 87

Anexo 30. Conteo de mohos y levaduras de variedad Chaska... 88

Anexo 31. Conteo de mohos y levaduras de variedad Chaska... 88
Resumen

El objetivo del trabajo fue determinar los parámetros de elaboración de tunta probiótica empleando *Saccharomyces boulardii*. Como materia prima se utilizó tuntas obtenidas de dos variedades de papa negra y chaska a las cuales se realizaron una caracterización fisicoquímica, a su vez estas fueron tratadas se evaluaron variables como pH, °brix, acidez y cinética de crecimiento microbiano, en dos medios de cultivo tales como son; solución salina peptonado y agua destilada, las dos variedades fueron remojadas por tiempo de 15 minutos a temperatura ambiente y posteriormente las muestras fueron esterilizadas por 15 minutos a 121 ºC luego se incubo a 37ºC por 24 y 48 horas, se escurrió y secado del producto para su envase. Para la determinación del producto óptimo se realizó una evaluación sensorial en escala hedónica aplicando un diseño experimental de Taguchi y finalmente evaluar parámetros fisicoquímicos y microbiológicos; los resultados obtenidos respecto a la curva de crecimiento microbiano nos dan que la variedad negra en solución salina peptonado es la que presenta mayor número de bacterias, con respecto a la optimización se determinó que la variedad fue la variable con influencia determinante y en la evaluación sensorial la variedad negra obtuvo la preferencia de los jueces.

Palabras clave: probiótico, tunta, taguchi
Abstract

This work was made with the objective of determining parameters about making probiotic tunta using *Saccharomyces boulardii*; tuntas made from two varieties of potato: black and chaska were used as raw material, they went through a physical chemistry characterization, where variables like pH, Brix, acidity, microbial growth kinetics were evaluated in two mediums which are peptone saline solution and distilled water. The two varieties of potatoes were soaked for 15 minutes on ambient temperature and after that the samples were sterilized for 15 minutes at 121 deg C, for the inoculation process at 37 deg C for 24 and 48 hours, and finally the draining and drying were done for their packing. A sensory evaluation was done in order to determine the optimal product, this was done using a hedonic scale applying the Taguchi experimental design, and finally to evaluate physical chemistry and microbiological parameters. The obtained results according the microbial growth curve are that the tunta, black variety, in peptone saline solution presented a bigger number of bacteria. About optimization, it was determined that variety was the determinant variable, and about sensory evaluation, tunta, black variety was preferred by the judges.

Keywords: Microbial Growth, Probiotic, Tunta.
CAPITULO I
INTRODUCCIÓN

La tunta es un alimento tradicional de la zona andina sudamericana. No se conoce productos a base de tunta con tecnologías de procesamiento modernos en nuestro medio. Este alimento es de aceptación en todos los niveles socio económicos del altiplano y también de la población mayoritaria de la zona rural. Cabe mencionar que este alimento es consumido por personas de todas las edades incluyendo los niños.

La tunta es un alimento típico de la región del altiplano y del Perú. La adición de este probiótico a la tunta y su conservación en el tiempo podría ser un aporte a la diversificación de alimentos probióticos. Sin embargo no existe la tecnología de adición de \textit{Saccharomyces boulardii}, si este crece, muere o se conserva en el tiempo, en la estructura de la tunta. Considerando este problema se determinó la tecnología de adición y la cinética de crecimiento de \textit{Saccharomyces boulardii} en la tunta.

Los probióticos son microorganismos vivos que proporcionan efectos benéficos sobre la flora intestinal y se les atribuyen papeles importantes en las funciones inmunitarias, digestivas y respiratorias y de balance microbiológico, además juegan un papel importante en la prevención de enfermedades, lo que permite que alimentos adicionados con estos hagan parte de la dieta diaria de personas sanas. Se ha determinado que los probióticos contribuyen a disminuir la concentración de sustancias potencialmente cancerígenas en el intestino, y a estimular la capacidad inmunológica del huésped (Henríquez M. y Moreno C. 2009). Otro de los actores en los alimentos funcionales es
la fibra, se considera que por definición las fibras dietarías no son digeridas por las enzimas de los mamíferos, de los animales mono gástricos. Por lo tanto, ellas transitan por el intestino y sirven como ayudantes de la digestión. El empleo de antibióticos en el tratamiento de diversas enfermedades en las que usualmente la persona termina por auto medicarse, destruye la flora nativa del tracto digestivo, privando al organismo tanto de bacterias necesarias para la digestión de alimentos, como otras que lo protegen contra infecciones futuras. En la industria farmacéutica existe el antibiótico Floratil, que está compuesto por la *Saccharomyces boulardii*, microorganismo dotado de propiedades para fortalecer la flora microbiana.

Cada día aumenta la búsqueda de beneficios en los alimentos que contribuyan a mejorar la salud, por tal motivo los consumidores se preocupan por adquirir productos alimenticios que proporcionen ventajas nutricionales y beneficien la salud humana, estos alimentos se denominan alimentos funcionales y actualmente toman fuerza en la dieta diaria de la población. Según Patiño E. (2009), una de las áreas de investigación más importantes dentro del mundo de los alimentos funcionales es la relacionada con la leche y los productos lácteos, que a su vez está ligada a los probióticos y en muchos otros casos a la fibra. Por ello el presente trabajo tuvo los siguientes objetivos:
Objetivos

1.1. Objetivo General

Determinar los parámetros de elaboración de tunta probiótica empleando *Saccharomyces boulardii*.

1.1.2. Objetivos Específicos

- Determinar la curva de crecimiento microbiano de *Saccharomyces boulardii* en tunta sumergida en solución salina peptonada y agua destilada.
- Optimizar el producto final a través del método Taguchi.
- Aplicar un análisis sensorial en el producto final (Aceptarabilidad, Masticabilidad y textura)
CAPITULO II

MARCO TEÓRICO

2.1. Base conceptual

2.2. Tunta (*Solanum tuberosum*).

Calisaya y Alvarado (2009) definen a la Tunta como un alimento ancestral del altiplano peruano, procesado a partir de la papa. Actualmente se busca aprovechar este alimento en forma industrial y comercializarlo dentro de los estándares requeridos por los mercados nacionales e internacionales. La tuna es el tubérculo de papa congelado y remojado para la eliminación de sus compuestos amargos. Posteriormente es secado por exposición al sol los tubérculos así procesados pueden guardarse durante meses y a veces años, manteniendo casi intactas sus cualidades. Además, son ligeros y pueden ser transportados fácilmente. Ambos constituyen una alternativa local para dar valor agregado a la producción de papa en el altiplano y son utilizados cotidianamente en la dieta de los pobladores de las zonas de altura del Perú y Bolivia.

A. Zonas de producción

La tuna se elabora en la región alto andina sobre los 3800 m.s.n.m. La zona altiplánica de Puno tiene aproximadamente el 80% de la producción nacional, destacando las provincias de El Callao, Carabaya, Lampa, Chucuito y Azángaro, las cuales poseen clima frío, geografía plana y ríos con caudal apropiado, condiciones favorables para su elaboración. Época de producción La elaboración de tuna se realiza en la estación de invierno, desde mayo hasta fines de julio, cuando ocurren las temperaturas más bajas del año, inferiores a 5°C. Se le denomina también “época de
heladas”. En dichos meses se produce una fuerte radiación solar, escasa nubosidad y baja humedad relativa (menor de 40%). Estos factores favorecen el congelado y secado natural de la papa para transformarse en tunta. (Mamani, 1978).

B. Características del Producto

Un lote de tunta de buena calidad desde el punto de vista comercial debe reunirse siete características básicas: forma, color, tamaño, rehidratación, sabor, textura y olor. Estas se descreben en la Tabla 1.

Tabla 1.

Características básicas que identifican la calidad de la Tunta

<table>
<thead>
<tr>
<th>Característica</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forma</td>
<td>De forma redonda o alargada de acuerdo a la variedad de papa empleado. Ejemplo, Chaska: redonda y Locke: alargada</td>
</tr>
<tr>
<td></td>
<td>El color, de referencia, debe ser Blanco intenso, perla game de color puede extenderse hasta Blanco mate. No es recomendable la presente de manchas amarillentas o de color oscuro.</td>
</tr>
<tr>
<td>Color</td>
<td>El olor de un alimento contribuye al placer de comer. Debe No debe presentar olores fuertes o fétidos debe tener olor suave, a hierbas acuáticas.</td>
</tr>
<tr>
<td>Olor</td>
<td>Grandes. Si es redonda, mayor de 5.1 cm. De diámetro; si es alargada, mayor de 7 cm. De largo.</td>
</tr>
<tr>
<td>Tamaño</td>
<td>Mediana. Si es redonda, de 3.9 a 5 cm. De diámetro; si es alargada, de 5. A 7 cm. De largo.</td>
</tr>
<tr>
<td></td>
<td>Pequeña. Si es redonda, menor de 3.9 de diámetro; si es larga, menor de 5.5 cm. De largo.</td>
</tr>
<tr>
<td>Rehidratación</td>
<td>Es el tiempo que debe remojarse la tunta para que se ablande y pueda cocinarse fácilmente. Este tiempo puede variar entre 10 minutos a media hora.</td>
</tr>
<tr>
<td>Textura</td>
<td>Suave y esponjosa, en especial las variedades nativas.</td>
</tr>
<tr>
<td>Sabor</td>
<td>Agradable, ligeramente insípido. Combina bien con comidas de sabores fuertes.</td>
</tr>
</tbody>
</table>

Es un alimento, al que se le atribuye desde funciones alimenticias hasta curativas. “Antes las personas hacían hervir el chuño y utilizaban el agua para contrarrestar los cuadros de diarrea”, que coincide con el informe de la organización de las Naciones Unidas para la Agricultura y la alimentación (FAO), que indicó que en el 2005 había dos millones de bolivianos desnutridos, es decir, el 22% de la población "serían más sin la existencia de este tubérculo".

Tabla 2.
Composición nutricional de la Tunta 100 gramos

<table>
<thead>
<tr>
<th>Componentes</th>
<th>Composición en 100 g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía (Kcal)</td>
<td>323</td>
</tr>
<tr>
<td>Agua (ml)</td>
<td>18,1</td>
</tr>
<tr>
<td>Proteína (g)</td>
<td>1,9</td>
</tr>
<tr>
<td>Grasa (g)</td>
<td>0,5</td>
</tr>
<tr>
<td>Fibra (g)</td>
<td>2,1</td>
</tr>
<tr>
<td>Carbohidratos totales</td>
<td>77,7</td>
</tr>
<tr>
<td>Ceniza (g)</td>
<td>1,8</td>
</tr>
<tr>
<td>Calcio (mg)</td>
<td>92</td>
</tr>
<tr>
<td>Fosforo (mg)</td>
<td>54</td>
</tr>
<tr>
<td>Hierro (mg)</td>
<td>3,3</td>
</tr>
<tr>
<td>Retinol (mcg.)</td>
<td>0</td>
</tr>
<tr>
<td>Tiamina (mg.)</td>
<td>0,03</td>
</tr>
<tr>
<td>Riboflavina (mg.)</td>
<td>0,04</td>
</tr>
<tr>
<td>Niacina (mg.)</td>
<td>0,38</td>
</tr>
<tr>
<td>AC. Ascorbico (mg.)</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Fuente: Tablas de norma técnica peruana NTP 011.400. 2007

1.1.1. **Levadura *Saccharomyces boulardii*.

Saccharomyces boulardii es considerado como probiótico; ya que cuando recorre el tracto gastrointestinal, genera efectos fármaco dinámicos semejantes a los efectos fisiológicos de la flora intestinal normal (Miranda, 2009). Según Buts (2005) indica que, *Saccharomyces boulardii* una levadura natural no modificada genéticamente que es aislada de la corteza del árbol del itchee en
Indochina, (McFaland y Bernasconi, 2007) y no fue hasta principios de los años 50 cuando se empleó en Francia para tratar un caso de desorden diarréico. Esta levadura muestra un crecimiento óptimo a una temperatura inusualmente alta de aproximadamente 37°C y, por ello, se le considera como una “levadura de temperatura extremadamente alta (Figura 1), también (Vandenplas y otros, 2002) mencionan que, *Saccharomycesboulardii*, antes denominada *Saccharomyces cerevisiae Hansen* CBS 5926 es una levadura no patógena, aislada del Itcheé (un cítrico) en Indochina. Se desarrolla a una temperatura de 37°C. Existe comercialmente en una preparación viable liofilizada (deshidratada en congelación); es la única levadura con la que se han hecho estudios doble ciego. La *Saccharomyces boulardii* diferente de la levadura del pan *Saccharomyces. cerevisiae* en varios parámetros taxonómicos, metabólicos y moleculares; resiste la acción del ácido gástrico y la bilis y se encuentra viva en todo el sistema digestivo, cuando se administra diariamente en forma liofilizada; dos a cinco días después, no se la detecta en las heces. (TheKaiser Center foro, 2011).

Figura 1. Saccharomycesboulardii.
Fuente: The Kaiser Center foto, por Pietra 2011.
A. Forma y farmacocinética

En la forma liofilizada, *Saccharomyces boulardii* la sustancia activa de un producto medicinal comercializado en casi 100 países de todo el mundo, con diferentes nombres de marca, presentaciones y concentraciones de dosis; generalmente se presentan en cápsulas de 50 mg. *Saccharomyces boulardii* liofilizada se obtiene a través del secado por congelación en presencia de lactosa. Este método permite que la levadura se mantenga viva y estable. Un estudio de las propiedades fármaco dinámicas de *Saccharomyces boulardii* demostró que, en la mayoría de casos, dichas propiedades están asociadas a su capacidad de reactivación. Al igual que todas las levaduras, *Saccharomyces boulardii* genéticamente resistente a los antibióticos antimicrobianos; para casi todos los antibióticos estudiados, de *Saccharomyces. Boulardii* siempre es muy alto > 128 mg/l (Bergogneporbézin, y Buts 2005).

2.3. Base teórica

2.3.1. Crecimiento microbiano

En un sistema biológico se define al crecimiento como el aumento ordenado de las estructuras y los constituyentes celulares de un organismo. Según ello, el aumento de la masa celular producido por acumulación de productos de reserva (glucógeno, poli β-hidroxibutirato) no constituyen crecimiento. Se puede considerar como crecimiento al incremento de células individuales por un lado, y por otro lado se puede considerar al crecimiento del número de células: proliferación de la población. En lo que se refiere al crecimiento de células individuales, este consiste en el aumento del tamaño y peso de las células que precede a la división celular. Esta división trae aparejada un aumento en el número de células (Cátedra Microbiología Agrícola).
A. Crecimiento microbiano en medio líquido

Si la bacteria crece en un medio líquido, en la mayoría de los casos las células que se producen en cada división continúan su vida independientemente formándose una suspensión de células libres. (Puerta, C. J., & Ureña, C. P. 2005).

Esta puede ser evidenciada en un medio de cultivo que proporcione todos los requerimientos nutricionales para el microorganismo, además de poseer las condiciones óptimas de temperatura, pH, aireación y agitación (Buitrago y Escobar, 2009 p. 75). A su vez esta es expresada en función a crecimiento logarítmico en función al tiempo (Figura 2).

Figura 2. Curva de crecimiento típica de una levadura

Fuente: Buitrago y Escobar 2009. Aplicación de levadura *Cándida spp* como una alternativa viable para la retardación en la pudrición del banano (*Musa acuminata*).
Fase de adaptación.

Esta fase es generalmente considerada como el periodo que precede al estado de crecimiento exponencial, que en la mayoría casos presenta una duración corta y a la vez la fase de adaptación se considera en 2 partes. Buitrago y Escobar, (2009).

Fase de crecimiento exponencial.

Las células se incrementan exponencialmente, debido a que una de las células se encuentra en un estado interno de división celular. Buitrago y Escobar, (2009).

Fase estacionaria.

En este periodo el porcentaje de crecimiento comienza a decrecer y eventualmente el número de células comienza a ser constante. El número de células que mueren es comparativamente igual, al número de células que se forman, habiendo un estado de equilibrio Cook, citado por Buitrago y Escobar, (2009).

Fase de declaimiento.

Generalmente, el número de células mueren exceden el número de las células que se produce y el cultivo experimenta una fase de declive (Cook, citados por Buitrago y Escobar 2009).

B. Crecimiento microbiano en medio sólido

Las fases, parámetros y cinética de crecimiento discutidas para el caso de los cultivos líquidos se presentan también en cultivos sólidos. La cinética de crecimiento, en este caso, se puede estudiar
siguiendo la evolución del número de células viables por unidad de superficie o por unidad de masa.

Cuando una célula aislada e inmóvil comienza a crecer sobre un sustrato sólido, el resultado del crecimiento al cabo del tiempo es una colonia por consiguiente, se denomina unidad formadoras de colonia (UFC) a una célula bacteriana viva y aislada que se encuentra en condiciones de substrato y ambientales adecuadas da lugar a la producción de una colonia en un breve lapso de tiempo. Si en número inicial de bacterias por unidad de superficie de las colonias da lugar a lo que se llama un césped cuando se realizan los cultivos en placas de laboratorios. En el caso de microorganismos móviles (deslizantes) o en el de los hongos filamentosos que tienen un crecimiento trófico no se producen colonias aisladas sino formaciones más difusas o micelares. (Puerta, C. J., & Ureña, C. P. 2005).

C. Modelos predictivos del crecimiento microbiano

Según Mc. Meekiny y otros (1993), la aplicación de modelos matemáticos para describir el crecimiento de los microorganismos en alimentos ha tenido un notable desarrollo en los últimos años. Los principales factores que han contribuido a incrementar el interés por los modelos predictivos en microbiología de alimentos han sido dos. El primero de ellos ha sido el marcado aumento de las intoxicaciones provocadas por alimentos durante los años 80, lo que llevó a un mayor conocimiento, por parte de la opinión pública, de los requerimientos para una alimentación sana y segura. El segundo ha sido la comprensión de que los métodos microbiológicos tradicionales y muchos métodos "rápidos", que se utilizaban para determinar la calidad y la seguridad de los
alimentos, estaban limitados por las necesidades de tiempo para obtener resultados y tenían muy poco valor predictivo. (Buchanan, por Garza, 1996).

Los modelos microbianos constituyen valiosas herramientas, en la industria alimentaria, para predecir el crecimiento o supervivencia de los microorganismos. Los modelos pueden, de esta forma, aportar información muy útil para tomar decisiones acerca de la higiene y la vida útil de un producto, pudiéndose estimar los riesgos potenciales debidos al crecimiento de patógenos en un alimento tras un período de almacenamiento en determinadas condiciones, o establecer una fecha de caducidad para un producto mediante la estimación del tiempo necesario para alcanzar un nivel especificado de alteración del producto o de población microbiana. (Garza, 1996).

2.3.2. Modelos primarios.

Los modelos primarios se ocupan de la descripción de los cambios del número microbiano en función del tiempo (crecimiento, supervivencia, inactivación). Cualitativamente pueden incluir unidades formadoras de colonias (ufc), biomasa, medidas de absorbancia, además de niveles de substratos o de productos metabólicos producidos (Geeraerd y col, 2004).

Muchos de los modelos primarios desarrollados hasta ahora son modelos deterministas de población. En estos modelos, la evolución del número total de células de una población es descrita a través de un sencillo conjunto de parámetros (máxima densidad poblacional, velocidad de crecimiento específica, fase de latencia) (Sswinnen y col, 2004).
Entre los modelos de existencia de poblaciones se pueden citar el modelo de (Buchanan y col, 1997), un modelo lineal trifásico que describe la curva clásica de crecimiento en tres partes (fase de latencia, fase exponencial y fase estacionaria).

2.3.3. Modelos secundarios

Los modelos secundarios caracterizan los parámetros que pueden aparecer en los modelos primarios en función de las condiciones del medio (temperatura, pH, actividad de agua, etc.). Permiten considerar como dos o más factores interactúan sobre el crecimiento microbiano. En el pasado los modelos secundarios para el tiempo de latencia solamente incorporaban el efecto del ambiente de incubación. Hoy en día han surgido muchos más modelos que incluyen otros factores relevantes como las condiciones de pre incubación. Estos modelos podríamos agruparlos en dos secciones:

- Modelos que calculan la duración de la fase de latencia en función de las condiciones de incubación.
- Modelos que calculan la duración de la fase de latencia en función de las condiciones de pre-incubación y de incubación. (Buchanan &Col, 1997).

2.2.3. Modelos terciarios

Los modelos terciarios pueden tener varias formas, comenzando por combinar los dos primeros niveles de modelos basados en experimentos laboratorios (por ejemplo, el “Pathogen Modeling Program”, creado y puesto a disposición de la comunidad científica gratuitamente por la USDA); versiones más extendida que incluyen la posibilidad de importar una historia de
temperatura para predecir la vida útil restante con respecto a un organismo deteriorador específico, como es el caso del “Seafood Spoilage predictor” (Dalgaard y col., 2002); o llegando hasta la incorporación de modelos predictivos en una red de evaluación de riesgos microbiológicos, como por ejemplo, el SERA (“Somonella Enteritidis Risk Assessment”) del USDA (Geeraerd & Col., 2004).

2.2.4. Cinética microbiano

La microbiología predictiva se basa en el desarrollo de modelos matemáticos que permiten predecir la velocidad de crecimiento de los microorganismos bajo determinadas condiciones ambientales (Fornaris & Cárdenas, 2001). Algunos de los factores principales que afectan el crecimiento microbiano en los alimentos son la temperatura y el pH, por lo cual deben tenerse en cuenta para lograr una determinada predicción. La aplicación de modelos matemáticos se realiza en dos etapas principales:

- Modelado de la curva de crecimiento del microorganismo.
- Descripción de la variación de los distintos parámetros que afectan a dicha curva. Estas curvas se ajustan y sus parámetros se derivan usando programas computacionales (Buchanan, 1991).

El empleo de modelos matemáticos permite así, cuantificar y predecir el desarrollo microbiano con el objeto de asegurar la calidad de un alimento.
1.1.3. Cinética de crecimiento de un cultivo discontinuo

Según Puerta & Ureña (2005) el estudio de la cinética del crecimiento de microorganismos que crecen aislados que no forman ningún tipo de estructura. Esta es la forma de crecimiento de la levadura (hongo unicelular) y de las bacterias. Es importante conocer la cinética de crecimiento de los cultivos microbianos para predecir cómo va a evolucionar un cultivo, cómo va a ir consumiéndose el substrato y cómo se van a ir acumulando los productos del cultivo. Sin conocer estos factores es muy imprudente iniciar el cultivo en un fermentador de 10.000 litros, por ejemplo, con el coste que ello supone, puesto que no podemos predecir qué va a pasar, cuándo va a completarse el crecimiento, cómo se va a acumular el producto, etc. Las células aisladas cultivadas en un volumen finito de medio de cultivo apropiado van utilizando los nutrientes que tienen disponibles con la mayor eficiencia y rapidez que pueden, sintetizando sus propios componentes celulares y dividiéndose en cuanto han podido duplicar su masa y su material genético. El tiempo que tarda una célula en hacer todo lo anterior es lo que conocemos como tiempo de generación (τ) y puede variar desde unos 20 minutos en condiciones óptimas hasta varios meses en condiciones del suelo. Cada vez que transcurre un tiempo de generación, el número de células se duplica, siguiendo, por tanto, un incremento exponencial.

1.1.4. Cinética de crecimiento en un cultivo continuo.

Según Puerta & Ureña (2005) en un cultivo continuo se mantienen los microorganismos en crecimiento constante porque se añade de forma constante medio de cultivo fresco (que aporta nuevos nutrientes) y se elimina cultivo (medio usado con sus microorganismos correspondientes) a la misma velocidad con objeto de mantener el volumen total del cultivo constante. Los cultivos
continuos son importantes para trabajar con microorganismos que estén creciendo constantemente de manera que sean capaces de producir constantemente productos de interés (biomasa, metabolitos secundarios, etc.). Este tipo de cultivo es también importante en los estudios de fisiología y de ecología microbiana. En la naturaleza un ejemplo de cultivo continuo lo constituye el rumen de ciertos animales y el conjunto de procesos microbianos intestinales de todos los animales. En un cultivo continuo se pretende mantener un ambiente constante durante todo el tiempo de cultivo. Esto es imposible en un cultivo estanco en el que los nutrientes se van consumiendo progresivamente y el medio se va cargando de productos de desecho.

1.1.5. Alimentos Prebióticos

Los prebióticos son microbios vivos que pueden incluirse en la preparación de una amplia gama de productos, incluyendo alimentos, medicamentos, y suplementos dietéticos. En nuestra ciudad y el Perú podemos encontrarlo en yogures saborizados (ejemplo: Laive). Las especies de Lactobacillus (Fig. 1) y Bifidobacterium son las usadas más comúnmente como prebióticos, pero la levadura Saccharomyces boulardii y algunas especies de E. coli y Bacillus también son utilizados como prebióticos.

Por otro lado, los prebióticos, como la inulina, son ingredientes de la dieta no digeribles en el estómago e intestino delgado, y que producen efectos benéficos estimulando selectivamente el crecimiento y actividad de uno o más tipos de bacterias en el colon, las que tienen a su vez la propiedad de elevar el potencial de salud del hospedero, es decir estimulan el crecimiento y desarrollo de los prebióticos. Estudios in vivo muestran que solo 4 g de inulina diarios son efectivas para incrementar el número de bacterias beneficiosas en el colon.
Sin embargo, los beneficios de los probióticos deben estudiarse en cada especie, es decir, los beneficios que ofrece un determinado tipo de probiótico no pueden extrapolarse a otros. Incluso dentro del mismo género y especie, las cepas pueden tener distinta capacidad prebiótico y diversas funciones. En general, los estudios apuntan que los beneficios se centran en una mejora de la salud intestinal y de la función inmunitaria. Pueden ser útiles para combatir las diarreas en niños (Sangronis Elba, 2007).

Schrezenmeir & Vrese (2001), los probióticos son microorganismos inocuos que se incorporan a los alimentos y que, una vez ingeridos, sobreviven en el tubo digestivo del consumidor donde regulan el micro biota intestinal y ejercen efectos beneficiosos para su salud. Se diferencian de los prebióticos que son "componentes alimenticios no-vivos (principalmente fibras dietarias), cuyo consumo confiere un beneficio para la salud del huésped en asociación con la modulación de la micro biota".

Los probióticos son principalmente bacterias lácticas pertenecientes a los géneros *Lactobacillus* o *Bifidobacterium* que, en su mayoría, han sido aisladas a partir de deposiciones de individuos sanos. A estas bacterias se les realiza un proceso de selección (screening), evaluando su capacidad de resistir al pH ácido del estómago y a las enzimas digestivas y sales biliares del intestino, y de adherir al mucus o a las células epiteliales intestinales, todas propiedades que favorecen su sobrevida y permanencia en el tubo digestivo. El proceso de selección también evalúa en estas cepas la existencia de actividades funcionales tales como actividades antioxidante, anti-inflamatoria, inmune estimulante, antitumoral, analgésico, antibacteriano, entre otros, que permiten a la cepa seleccionada modular funciones fisiológicas en
el huésped y ejercer sus efectos saludables. Cabe destacar que dichas propiedades son cepa-específicas, es decir, que una cepa determinada ejerce sólo algunas de todas las propiedades descritas para los probióticos. Por ejemplo las propiedades funcionales de *L. rhamnosus GG*, *L. rhamnosus* DR20 y *L. rhamnosus* LCR35 son distintas a pesar de que estas tres cepas pertenezcan al mismo género (*Lactobacillus*) y a la misma especie (*rhamnosus*).

Los probióticos pueden ser considerados como "ingredientes funcionales" que se utilizan para "funcionalizar" alimentos, es decir agregar una propiedad funcional definida que le otorga un valor agregado al producto. Los productos alimenticios que contienen probióticos entran, por lo tanto, en la categoría de "Alimentos funcionales", pues entregan beneficios para la salud del consumidor, más allá de los beneficios nutricionales del alimento que los contiene.

El mercado de los probióticos en el mundo está en plena expansión y presenta una de las mayores tasas de crecimiento dentro del mercado global de los "alimentos funcionales". El número de nuevos productos con probióticos aumenta cada año y, si bien el principal sector asociado al uso de probióticos sigue siendo el de los productos lácteos, los progresos de la microbiología y de la tecnología de alimentos (y en particular de los procesos de micro encapsulación), están permitiendo la incorporación de estos microorganismos a productos tan variados como jugos, helados, cereales, y también mayonesa, chocolate y galletas debido a que las propiedades probióticas son cepa-específicas, es importante tener bien rotulados estos productos con el nombre de la cepa presente no solo el nombre de género y especie de tal manera que tanto los profesionales de la salud como los consumidores puedan diferenciar entre los distintos productos disponibles en función de la cepa que contienen.
En Chile, el primer producto alimenticio con probióticos fue el "Uno al día", el cual fue lanzado al comercio el año 1998 por la empresa Soprole. Desde entonces, otros productos han salido en el mercado local de tal manera que en la actualidad, todas las principales empresas de productos lácteos del país tienen productos probióticos (Schrezenmeir&Vrese2001).

1.1.6. **Estadística diseño Taguchi**

Para el estudio de los factores que afectan a un producto o proceso, Taguchi se basa en un conjunto pequeño de matrices del diseño. Estas matrices de los diseños ortogonales, es decir, sus columnas son ortogonales. Los diseños factoriales 2^k son un ejemplo de diseños ortogonales. Taguchi utiliza los valores 1 y 2 para denotar los niveles bajo y alto, respectivamente, en lugar de la notación usual; puesto que considera la posibilidad de más de dos niveles en cada factor. En la metodología de Taguchi se consideran diseños ortogonales fraccionarios, es decir, se reduce el número de las de la matriz del diseño mediante identificación de factores principales y de factores de interacción. Esto permite una mayor viabilidad del estudio de tratamientos. Por ejemplo, para el diseño 2^7 de 7 factores con dos niveles. (Figura 3).

```
1 1 1 1 1 1 1
1 1 1 2 2 2 2
1 2 2 1 1 2 2
1 2 2 2 2 1 1
2 1 2 1 2 1 2
2 1 2 2 1 2 1
2 2 1 1 2 2 1
2 2 1 2 1 1 2
```

Figura 3. Matriz de diseño de Taguchi
Esta matriz es referida como matriz del diseño $L8$: Tiene sete columnas ortogonales y ocho filas, en contraste con los $27 = 128$ experimentos que constituirán la matriz del diseño de un diseño factorial completa de siete factores con dos niveles. Esta matriz $L8$ puede ser utilizada también para el estudio de un número inferior de factores, cuando no se asignada algunas de las columnas factores principales (según se ha visto en el tema anterior). Común conjunto relativamente pequeño de diseños, taguchi proporciona un catálogo reducido de modelos que permiten abordar un número relativamente alto de experimentos en ingeniería. Por ejemplo, taguchi considera los siguientes diseños ortogonales fraccionarios con dos niveles: $L4; L8; L12; L16; L32$ y $L64$: El listado de diseños con tres niveles incluye: $L9; L18; L27$ y $L81$: En general, un diseño LN está definido mediante una matriz del diseño con N filas y permite considerar hasta $N - 1$ factores.

Intuitivamente, cuando se reduce el número de filas de la matriz del diseño asociada, por ejemplo, a un diseño factorial $2k$, se produce una pérdida que se remeja en:

- La pérdida de capacidad para estimar las interacciones entre factores.
- La pérdida de capacidad para estimar algunos de los efectos principales.

Taguchi proporciona reglas gráficas para cada matriz del diseño utilizada en su catálogo. Específicamente, en los gráficos que propone, los nodos son asignados a factores principales y los segmentos que unen dos nudos son asignados a los factores de interacción Correspondientes selección de un diseño ortogonal. Para seleccionar un diseño ortogonal se utiliza el siguiente método. Notemos primero que un diseño LN tiene asociados $N - 1$ grados de libertad. Entonces, un diseño apropiado para el desarrollo de un estudio es el más pequeño cuyos grados de libertad están
justo por encima de los grados de libertad asociados con todos factores e interacciones. El proceso de selección se puede resumir en los siguientes puntos:

- Cada factor con \(k \) niveles tiene \(k - 1 \) grados de libertad.
- Los grados de libertad para un factor de interacción doble son el producto de los grados de libertad de los factores principales que lo definen los grados de libertad requeridos para todos los factores principales e interacciónese suman para obtener el total de grados de libertad \(d.f. \) total requeridos en el desarrollo del experimento se selecciona el \(LN \) más pequeño para el cual \(N - 1 > d.f. \) total y que puede acomodar los factores e interacciones que intervienen en el experimento.

En algunos casos, el estudio requiere combinaciones de factores principales e interacciones que impiden que el diseño seleccionado en el punto 4 sea apropiado y, por tanto, sea 9tenga que considerar el siguiente \(LN \) en magnitud. Por ejemplo, este hecho se da cuando se incluye un número elevado de factores de interacción en el estudio. Para resolver este problema también se puede desarrollar un análisis preliminar de los factores de interacción que son realmente significativos.

1.1.7. Evaluación sensorial

La evaluación sensorial de alimentos es una disciplina científica usada para evocar, medir, analizar e interpretar reacciones hacia las características de los alimentos y materiales. La evaluación sensorial también nos proporciona información sobre la calidad de los alimentos evaluados y las expectativas de aceptabilidad de parte del consumidor (Liria, 2007).
La asociación española de normalización (AENOR), define el análisis sensorial como el examen de las propiedades organolépticas de un producto realizable con los sentidos y cuya función es estudiar y traducir los deseos y preferencias de los consumidores en propiedades tangibles y bien definidas de un producto dado (UNE 87-001-94).

Según Witting (2001), la investigación de los alimentos comprende, tanto la determinación de su calidad tecnológica a base de análisis físicos, químicos y microbiológicos como de su calidad estética mediante la apreciación de sus características organolépticas. El método del análisis sensorial permite determinar en forma mucho más científica y objetiva que tanto influyen las características organolépticas en el consumidor en cuanto a aceptabilidad del alimento o bebida.

A. Clasificación

Según Morales, (2007) sustentan que las pruebas sensoriales se clasifican, de acuerdo con los objetivos que se persiguen, en dos grandes grupos: analíticas y efectivas. Las efectivas se dirigen, fundamentalmente, hacia los consumidores y pretenden evaluar su aceptación o preferencia por un determinado producto. Generalmente requieren 200 o más consumidores, sin embargo (Liria, 2007), es posible realizarlas con un grupo de entre 75 a 150 personas. Las pruebas analíticas se diferencian de las anteriores en que se necesitan catadores adiestrados en dar respuestas acerca de la calidad sensorial del producto sin tener en cuenta sus gustos o preferencias personales.

Las pruebas analíticas tienen el objetivo la evaluación o análisis discriminativo o descriptivo de las diferencias entre productos y la calidad mediante un grupo reducido de catadores
experimentados, adiestrados o poco adiestrados. Las pruebas afectivas tienen por objeto la evaluación de la aceptabilidad o preferencia de un producto por lo que trabaja con un gran número de catadores no adiestrados, es decir, consumidores representativos de la población Morales, (2007).

B. **Tipos de escalas**

Para las pruebas de evaluación sensorial pueden utilizarse tres tipos de escalas Morales, (2007):

- **Escala hedónica**

 Es la más popular de las escalas efectivas, generalmente se utilizan las estructuradas, de 7 puntos, que van desde “me gusta muchísimo”, hasta “me disgusta muchísimo”, pasando por “ni me gusta ni me disgusta. No obstante (Liria, 2007), el número de categorías en la escala pueden variar, así se puede usar las categorías con cinco o cuatro niveles (no me gusta nada, no me gusta mucho, me disgusta y me gusta mucho).

- **Escala de acción**

 Los valores de la escala están representados por términos que indican la acción que pudiera motivar el producto en el consumidor, por ejemplo: “lo comería siempre”, “no lo comería siempre” y otras semejantes.

- **Escala ordinal**

 Se utiliza para evaluar comparativamente la preferencia, entre varias muestras, unas con respecto a otras. Se solicita a los consumidores que ordenen las muestras, según su preferencia de menor a mayor.
AENOR (1997), en su norma UNE 87-020-93 describe diferentes tipos de escala de medida para la evaluación de las propiedades organolépticas, o un atributo en particular de una muestra dada.

1.1.8. **Análisis de los alimentos**

La importancia de la alimentación como necesidad vital es un hecho incuestionable conocido por todos. Si bien es importante comprender esta verdad, también es necesario conocer como nos alimentamos, es decir cuál es la calidad de los alimentos que ingerimos, sobre todo por la gran relación que se ha demostrado que tiene la alimentación con la salud.

La alimentación por ser un acto reiterado, a largo plazo y vital, constituye el factor ambiental que más influye en la etiología, es decir la causa, de numerosas enfermedades como el cáncer, la obesidad, la ateroesclerosis, etc. Los alimentos no son compuestos estáticos, sino dinámicos y consecuentemente las ciencias alimentarias deben estudiar la composición de los alimentos y los efectos que sus componentes provocan en el curso de los diferentes procesos a que están sujetos los alimentos, investigando y descubriendo las conexiones que existen entre la estructura de los diferentes compuestos y sus propiedades organolépticas así como su capacidad de deterioro en función de su composición química.

La caracterización de los alimentos proviene de los resultados de los diferentes ensayos a que puede sometérselas utilizando diferentes métodos de evaluación, los cuales pueden agruparse en función de los objetivos que persigan y los principios en que se fundamentan. Así, la evaluación
de los alimentos involucra tres tipos de análisis: análisis físico-químico, análisis microbiológico y análisis sensorial. (Granados & Torrenegra, 2013).

A. Análisis físicoquímico

Implica la caracterización de los alimentos desde el punto de vista físicoquímico, haciendo énfasis en la determinación de su composición química, es decir, cuales sustancias están presentes en un alimento (proteínas, grasas, vitaminas, minerales, hidratos de carbono, contaminantes metálicos, residuos de plaguicidas, toxinas, antioxidantes, etc.) y en qué cantidades estos compuestos se encuentran. El análisis físico-químico brinda poderosas herramientas que permiten caracterizar un alimento desde el punto de vista nutricional y toxicológico, y constituye una disciplina científica de enorme impacto en el desarrollo de otras ciencias como la bioquímica, la medicina y las ciencias farmacéuticas, por solo mencionar algunas. (Granados & Torrenegra, 2013).

B. Análisis microbiológico

Los alimentos son sistemas complejos de gran riqueza nutritiva y por tanto sensible al ataque y posterior desarrollo de microorganismos (bacterias, hongos y levaduras). En todos los alimentos hay siempre una determinada carga microbiana, pero esta debe ser controlada y no debe sobrepasar ciertos límites, a partir de los cuales comienza a producirse el deterioro del producto con la consecuencia perdida de su calidad y aptitud para el consumo. Por otra parte, existen microorganismos patógenos que producen enfermedades y cuya presencia es por tanto indeseable y hace extraordinariamente peligroso su consumo. El análisis microbiológico se realiza entonces con vistas a identificar y cuantificar los microorganismos presentes en un producto así como
también constituye una poderosa herramienta en la determinación de la calidad higiénica sanitaria de un proceso de elaboración de alimentos, lo que permite identificar aquellas etapas del proceso que puedan favorecer la contaminación del producto (Granados & Torrenegra, 2013)
CAPITULO III
MATERIALES Y MÉTODOS

2.1. Lugar de ejecución

El presente trabajo de investigación se realizó en la Universidad Peruana Unión Filial Juliaca perteneciente a la Provincia de San Román en el Departamento de Puno, a 3825 m.s.n.m que cuenta con una humedad promedio de 54% y una temperatura de 13 – 16 °C.

2.2. Materiales y equipos

2.2.1. Materia prima

Se trabajó con tunta proveniente de Chijichaya de la región de Puno, de las variedades negra y chaska, cultivo probiótico Saccharomyces boulardii, conocida industrialmente como Floratil 200mg/cap.

2.2.2. Materiales

- 50 placas petri, pyrex
- Papel filtro
- Matraces Erlenmeyer de 200 ml, pyrex
- Termómetro de mercurio de 0 – 200 ºC
- Crisoles
- Probeta graduada de 25 ml, pyrex
- 20 tubos de ensayo de 10 ml, pyrex
• Vasos precipitados de 150 ml, pyrex.

2.2.3. Equipos

• Estufa de secado de aire forzado. modelo 9030B.:+10°C-300°C
• Balanza semi- analítica denver instrument MXX-123: Max . de capacidad 120 gr, min .0.001 gr.
• Agitador magnético Velp. modelo: ARE . velocidad de hasta 1200 rpm y temperatura de 370°C como máximo.
• Mufla nabertherm LE 2/11. temperatura de hasta 1100°C
• Centrífuga de mesa centurión. modelo C 2006. velocidad de hasta 4000 rpm. tiempo: 99 minutos.
• Baño de maria con agitación y calentamiento 25lts BS-11 220 V.
• Microscopio monocular LW Scientific
• Equipo de titulación BOECO 0 – 50 ml.
• Cámara neubauer de 0.100 mm. a 0.0025 mm2.
• Mechero.

2.3. Metodología experimental.

Diagrama de flujo de procesamiento de tunta probiótica empleando *Saccharomyces boulardii*.

La serie de procesos que se llevaron a cabo se describe gráficamente en la (Figura 4) que presentamos a continuación.
Figura 4. Diagrama de flujo Determinación de parámetros de tunta con Saccharomyces boulardii
2.4. Descripción del diagrama de flujo

1. **Materia prima**

 La materia prima (Tunta) fue obtenida del centro poblado de Chijichalla – Ilave. Esta se obtuvo directamente de los productores siendo las variedades Chaska y Negra aplicadas para este estudio.

2. **Remojado.**

 La tunta fue remojado por 15 min a temperatura ambiente para lograr su remojado y luego fue introducida en una solución de gobierno peptonado.

3. **Envasado**

 Se realiza el envasado, en un matraz de 100ml luego se incorporó la solución salina peptonado con la relación de peptona 0.4 gr, sal 0.4 gr con una relación de 0.4gr por 400 ml

4. **Esterilizado.**

 De esta manera se esteriliza en un matraz de 100 ml a una temperatura de 121°C por 15 min para eliminar la mayor cantidad de carga microbiana y que no incida en el proceso.

5. **Enfriado**

 Se deja enfriar a temperatura de ambiente 15°C por una hora a condiciones asépticas.

6. **Inoculado**

 Se inocula la *Saccharomyces boulardii*, a una temperatura de 37°C durante una hora.

7. **Incubado**

 Se realiza el incubado a 37°C por 48 horas, durante la incubación se realiza simultáneamente el control del crecimiento de *Saccharomyces boulardii*, en el líquido de gobierno peptonado en la tunta que está inmersa en el envase de vidrio esterilizado.
8. **Escurrido**

Esta operación se realiza una vez que sea incubado la tunta con *Saccharomyces boulardii* en el líquido de gobierno peptonado.

9. **Secado**

Se realizó el secado mediante el método estufa de aire caliente a una temperatura de 45°C por un tiempo de 4 horas y posteriormente hasta obtener peso constante.

10. **Envasado**

Se realizó el envasado en frasco de vidrio.

2.4.1. Metodología de determinación de la curva de crecimiento microbiano

Para determinar la curva de crecimiento microbiano se inoculo *Saccharomyces boulardii* en dos medios de cultivo a condiciones similares los cuales fueron en solución salina peptonado y agua destilada en matraces Erlemeyer, cada uno de los medios fue enriquecido con dos distintas variedades de tunta Chaska y Negra a su vez estas se consideraron como un parámetro dentro del proceso de obtención del producto probiótico; para la elaboración de la curva del crecimiento microbiano se realizó un conteo de unidades formadoras de colonias por ml (UFC/ml) en la cámara de neubauer llevada al microscopio en intervalos de una hora hasta cumplir 7 horas de lectura a una temperatura de 37 ºC regulado por un baño maría con agitación constante a 20 RPM; cada lectura fue acompañada por un análisis de ph, índice de acidez, brix; Los datos obtenidos para la elaboración de la curva de crecimiento microbiano fueron tratados en el software StatSoft STATISTICA versión 12 obteniendo gráficos en función a tiempo vs crecimiento expresado en escala logarítmica.
2.4.2. **Método estadístico taguchi**

El diseño estadístico aplicado fue taguchi con una significancia de 0.05 donde las variables dependientes e independientes están expresadas en la (Tabla 3). A su vez los datos evaluados fueron realizados de acuerdo a un análisis sensorial.

Tabla 3.

Variables aplicadas en el Diseño de Taguchi

<table>
<thead>
<tr>
<th>N°</th>
<th>Variables</th>
<th>Dependientes</th>
<th>Independientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Textura</td>
<td>Variedad</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Masticabilidad</td>
<td>Tiempo</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Aceptación</td>
<td>Medio</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.

Determinación de parámetros de elaboración de tunta probiótica por el método Taguchi

<table>
<thead>
<tr>
<th>Panelistas</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>Textura</th>
<th>Masticabilidad</th>
<th>Aceptabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
2.4.3. Metodología para el análisis por escala hedónica para la aceptabilidad

Para el análisis sensorial se realiza la prueba de aceptación con escala hedónica, debido a que permite conocer el grado de aceptación o grado de satisfacción del producto durante un tiempo determinado.

La posible aceptación del alimento, se pide al juez que califique solo una muestra de tuna secada con adición de *Saccharomyces boulardii*, luego de su primera impresión responda cuánto le agrada o desagrada el producto, esto lo informa de acuerdo a una escala verbal - numérica que va en la ficha. La escala tiene 9 puntos, pero a veces es demasiado extensa, entonces se acorta a 7 ó 5 puntos:

<table>
<thead>
<tr>
<th>Escala</th>
<th>Puntaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me gusta muchísimo</td>
<td>9</td>
</tr>
<tr>
<td>Me gusta mucho</td>
<td>8</td>
</tr>
<tr>
<td>Me gusta moderadamente</td>
<td>7</td>
</tr>
<tr>
<td>Me gusta poco</td>
<td>6</td>
</tr>
<tr>
<td>No me gusta, ni me disgusta</td>
<td>5</td>
</tr>
<tr>
<td>Me disgusta poco</td>
<td>4</td>
</tr>
<tr>
<td>Me disgusta moderadamente</td>
<td>3</td>
</tr>
<tr>
<td>Me disgusta mucho</td>
<td>2</td>
</tr>
<tr>
<td>Me disgusta muchísimo</td>
<td>1</td>
</tr>
</tbody>
</table>

2.4.4. Análisis fisicoquímicos

A. Análisis de pH (AOAC, 32.018, 1984)

Para dicho análisis se utilizó un potenciómetro de mesa realizando la medición por triplicado con una muestra representativa de 30 ml en intervalos de tiempo de 24 horas.
B. **Análisis de Acidez** *(AOAC, 947.05, 1990)*

Para dicho análisis se utilizó un equipo de titulación que consiste en una bureta, un vaso de precipitado, un soporte universal y un anillo con su nuez. Se adicionan dos o tres gotas de fenolftaleína (o colorante) y se comienza a titular (dejar caer gota a gota del agente titulante sobre el titilado) hasta obtener un ligero vire a rosa (en el caso de la fenolftaleína) que dure 30 segundos cuando mínimo. Si es muy oscuro, la titulación ha fracasado. Se mide la cantidad de agente titulante gastado (o gasto de bureta) y se utiliza la normalidad de la sustancia.

C. **Análisis de Brix** *(AOAC, 932.12, 1990)*

Para dicho análisis se utilizó un brixómetro realizando la medición por triplicado con una muestra respectiva en intervalos de tiempo de 24 horas.

D. **Análisis de Grasa** *(AOAC, 985.15, 1990)*

Preparación de la muestra: en muestras con mucha humedad homogeneizar y secar a 103°C en estufa de aire considerando el tipo de muestra. Moler y pasar por tamiz de malla de 1 mm. Pesar 2 a 5 gramos de muestra preparada en el papel filtro previamente pesado y tapado con algodón desgrasado. Registrar muestra secar el matraz de extracción por 30 min a 103+ 2°C. Pesar el matraz de extracción registrar muestra 1. Poner el matraz de extracción en el sistema soxhlet el dedal en el tubo de extracción y adicionar el solvente al matraz. Extraer la muestra con el solvente por 6 a 8 horas a una velocidad de condensación de 3-6 gotas/seg. Una vez terminada la extracción eliminar el solvente por evaporación en rota vapor o baño María bajo campana. Hasta que no se detecte olor a éter. Secar el matraz con la grasa en estufa a 103+ 2°C por 10 min, enfriar en desecados y pesar. Registrar muestra 2.
E. **Análisis de Fibra (AOAC, 978.10)**

Para dicho análisis se realizó en triplicado, Pesar a 0.1 mg alrededor de 2 g de muestra preparada y transferir en al matraz del aparato de calentamiento a reflujo. Agregar 1.5 a 2.0 g de fibra cerámica preparada, agregar 200 ml de H₂SO₄ 0.255 N, hirviente, gotas de antiespumante y perlas de vidrio, conectar el aparato de calentamiento a reflujo y hervir exactamente durante 30 minutos rotando el matraz periódicamente. Desmontar el equipo y filtrar a través del embudo Büchner tipo California o sus alternativas. Lavar con 50 a 75 ml de agua hirviente, repetir el lavado con 3 porciones de 50 ml de agua o hasta que cese la reacción ácida retornar el residuo al aparato de calentamiento a reflujo y hervir exactamente durante 30 minutos, rotando el matraz periódicamente. Lavar con 25 ml de H₂SO₄ 0.255 N, hirviente, con 3 porciones de 50 ml de agua hirviente y con 25 ml de etanol al 95%, remover el residuo y transferir al crisol secar en estufa a 130 + 2 °C por 2 horas, enfriar en desecador y pesar. Incinerar 30 minutos a 600 + 15 °C, enfriar en desecador y pesar.

F. **Análisis de Ceniza (AACC 08-01 1995)**

Para dicho análisis se empleó el método AACC 08-01 (1995) El procedimiento consistió en poner un crisol a masa constante en el cual se pesaron 2 gr. De muestra; se colocó el crisol se llevó el crisol a la mufla, y se transfirió al desecador para su completo enfriamiento se determinó la diferencia de masa del crisol. Y se calculó el valor a través de la siguiente formula. Colocar en la mufla a 550 a 600° C.
G. **Análisis de Humedad** (AOAC, 925.10, 1990)

El contenido en agua de un producto se define convencionalmente como la pérdida de masa que experimenta en condiciones determinadas. El producto se seca a 130°C bajo presión atmosférica normal, durante una hora y media. Este método de desecación a 130°C se aplica a los granos, harinas y otros productos derivados de los cereales, reducidos a partículas de dimensiones inferiores o iguales a 1.700 µ, de las cuales, menos del 10% serán superiores a 1.000 µ y más del 50% inferiores a 500.

Según la norma CODEX STAN 152-1985 menciona que la harina de trigo no debe de superar un 15.5% de humedad. Además la harina debe de estar exenta de sabores y olores extraños.

2.4.5. **Análisis microbiológico.**

A. **Conteo de levaduras.**

Pesar 10.0 g de muestra en una caja Petri estéril y pasarla a un matraz Erlenmeyer que contenga 90.0 ml de una solución amortiguadora de fosfatos de pH 7.2 ó agua peptonado al 0.1% homogeneizar la muestra con la solución anterior en un vaso de licuadora estéril o pasarla a una bolsa de Stomacher y homogeneizar durante 10.0 segundos en el caso de la licuadora a velocidad mínima, 630 segundos en el Stomacher a una velocidad normal. Esta es la dilución primaria. De la suspensión o solución anterior, tomar 1.0 ml y transferirlo a un tubo de ensayo que contenga 9.0 ml de solución amortiguadora de fosfatos de pH 7.2, agitar y repetir esta operación tantas veces como diluciones sean necesarias. Se debe utilizar una pipeta estéril para cada dilución. (Camacho, A., M.Giles, A.Ortegón, Palao, B.Serrano y O. Velázquez. 2009).
CAPÍTULO IV
RESULTADOS Y DISCUSIONES

3.1. Determinación curva de crecimiento microbiano de *Saccharomyces boulardii* en tunta sumergida en solución salina peptonada y agua destilada

Los resultados de las curvas de crecimiento microbiano se muestran en la Figura 5 obtenidas a partir de las cuatro lecturas en los distintos medios de cultivo mencionados; esta a su vez es expresada en función a la cantidad de microorganismos en escala logarítmica y tiempo.

![Figura 5. Cinética de crecimiento de Saccharomyces boulardii en distintos medio de cultivo.](attachment:image)

Cada una de las curvas de crecimiento nos muestra claramente la fase en crecimiento exponencial ya que no es notable la fase de adaptación; sin embargo estas curvas nos muestran el
inicio de la fase estacionaria como se puede apreciar en el gráfico, siendo la más notable el caso de la variedad negra en SSP, desarrollándose en estado exponencial inicial con valores de 6,07 y como valor final de 6,43 en escala logarítmica. Según Fajardo & Sarmiento (2007) en Bogotá realizaron una investigación denominada: evaluación de melaza de caña como sustrato para la producción de *Saccharomyces boulardii*, obteniendo como fase exponencial intervalos comprendidos entre la hora 8 hasta la hora 14, concordando con los resultados obtenidos ya que la fase exponencial en la presente investigación consta de un mismo periodo de tiempo.

En el caso de las demás curvas de crecimiento la prueba que tuvo resultados menores a las otras fue la variedad Negra en el medio H₂O teniendo un inicio de 6,01 con una lectura final de 6,25 y la variedad Chaska se caracterizó por tener crecimiento mediano en los diferentes medios de cultivo en comparación de la otra variedad en estudio fenómeno que se puede explicar según Mantilla (2010) en su investigación de selectividad de medios de cultivos que, las levaduras pueden crecer en medios ricos de almidón; demostrando así la diferencias de las curvas. El crecimiento microbiano de cada una de las curvas se acerca a valores de 1 que expresan datos correlativos en R^2 siendo el más representativo de la variedad Negra en medio SSP con un valor de 0,969 y la prueba con el valor más distante a 1 es de la variedad Chaska en medio SSP con un valor de 0,817 y los no mencionados presentan valores intermedios teniendo en consideración que la diferencia de estos valores son muy cercanos y esos se pueden apreciar en la Tabla5; en concordancia Buelvas (2013) en su estudio de crecimiento microbiano en jamones menciona que valores de R^2 cercanos a 1 indican que las curvas obtenidas tiene una buena calidad y por ende se puede seleccionar la mejor curva para obtener un mejor ajuste.
Tabla 6.

Datos estadísticos de crecimiento microbiano de Saccharomyces boulardii

<table>
<thead>
<tr>
<th></th>
<th>Chaska</th>
<th>Negra</th>
<th>Chaska</th>
<th>Negra</th>
</tr>
</thead>
<tbody>
<tr>
<td>ufc/g</td>
<td>Media</td>
<td>Log(ufc/g)</td>
<td>DE*</td>
<td>ufc/g</td>
</tr>
<tr>
<td>1450000</td>
<td>145</td>
<td>6,16</td>
<td>19,58</td>
<td>102</td>
</tr>
<tr>
<td>1815000</td>
<td>182</td>
<td>6,26</td>
<td>25,15</td>
<td>1330000</td>
</tr>
<tr>
<td>1887500</td>
<td>189</td>
<td>6,28</td>
<td>26,58</td>
<td>1550000</td>
</tr>
<tr>
<td>1990000</td>
<td>199</td>
<td>6,30</td>
<td>23,47</td>
<td>1650000</td>
</tr>
<tr>
<td>2337500</td>
<td>234</td>
<td>6,37</td>
<td>16,30</td>
<td>1705000</td>
</tr>
<tr>
<td>2295000</td>
<td>230</td>
<td>6,36</td>
<td>13,20</td>
<td>1740000</td>
</tr>
<tr>
<td>2420000</td>
<td>242</td>
<td>6,38</td>
<td>12,75</td>
<td>1797500</td>
</tr>
</tbody>
</table>

R²: 0,923 0,849 0,817 0,969

*DE: Desviación Estándar
También se puede apreciar en la tabla mencionada valores de las lecturas en ufc/g correspondientes a cada tratamiento y así también estos fueron expresados en escala logarítmica así mismo se pueden observar la media aritmética y la desviación estándar que brindan mayor confiabilidad a las pruebas realizadas ya que las repeticiones nos brindan una reducción de error.

A continuación podemos ver los resultados del análisis de varianza (ANOVA) en función del tiempo y al crecimiento microbiano en escala logarítmica en las tablas 6 y 7 respectivamente; en ellas se pueden apreciar que el valor de “P” es igual a 0 en el caso del tiempo; en cambio la escala logarítmica es de 0,014754 mostrando que en el primer caso no hay significancia en cambio Marin, Cortes & Montoya (2010) describen que el factor tiempo si presenta significancia en el crecimiento microbiano en los frutos de Uchuva (*Physalis peruviana L.*) debido a que este fruto estaba en proceso de maduración en contraposición de la tuna ya que esta es obtenida por un proceso de liofilización.

Tabla 7
ANOVA (Análisis de Varianza) de crecimiento microbiano en función al tiempo

<table>
<thead>
<tr>
<th>Effect</th>
<th>Sums of Squares</th>
<th>DF</th>
<th>Mean Squares</th>
<th>F</th>
<th>P-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercepción</td>
<td>492,842</td>
<td>1</td>
<td>492,842</td>
<td>14904,03</td>
<td>0,000</td>
</tr>
<tr>
<td>Tiempo</td>
<td>0,237</td>
<td>3</td>
<td>0,079</td>
<td>2,39</td>
<td>0,144</td>
</tr>
<tr>
<td>“Error”</td>
<td>0,264</td>
<td>8</td>
<td>0,033</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ANOVA: Analisis de varianza.

Sin embargo en el segundo caso presentado en la Tabla 7 se muestra que hay una significancia notable con respecto a la escala logarítmica ya que cada una de las curvas de crecimiento presenta diferencias; asimismo en trabajos aplicados al crecimiento de *Saccharomyces*
boulardii en medios normales Acevedo, Romero & Espejo (2003) se trabajó en función de la absorbancia en lugar de escala logarítmica demostrando que la concentración de la levadura en estudio se puede expresar en distintas unidades y que tienen efecto en el crecimiento microbiano.

<table>
<thead>
<tr>
<th>Tabla 8.</th>
<th>ANOVA de crecimiento microbiano en función a la escala logarítmica (Log10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
<td>Sums of Squares</td>
</tr>
<tr>
<td>Regress.</td>
<td>7,496679E+12</td>
</tr>
<tr>
<td>Residual</td>
<td>8,665821E+12</td>
</tr>
<tr>
<td>Total</td>
<td>1,616250E+13</td>
</tr>
</tbody>
</table>

*ANOVA: Analisis de varianza.

La Figura 6 presenta diagramas de caja comparativo para la presencia de *Saccharomyces boulardii* en escala logarítmica en las distintas variedades de tunta luego de un tiempo de fermentación de 24 horas; esta diagrama revela que la variedad negra tiene mayor concentración que la variedad Chaska. También se observa que la presencia de *Saccharomyces boulardii* es más variable en la variedad chaska; sin embargo la distribución de esta levadura es muy similar en ambas variedades. Asimismo se muestra que en ambas variedades se presentan valores distribuidos simétricamente.

Según Fajardo y Sarmiento (2007) la diferencia de presencia de la levadura se debe al medio de crecimiento es decir sustrato; de modo que la gráfica muestra la variedad de tunta negra tiene un mejor sustrato para *Saccharomyces boulardii*.
A continuación se puede apreciar en la Tabla 9 la evaluación fisicoquímica correspondiente al pH, brix y acidez donde claramente se puede apreciar que hay notable diferencia de los grados brix entre las variedades siendo la variedad Chaska quien presento una lectura mayor ala de la variedad negra sin embargo; en la evaluación de acidez se aprecia una leve diferencia entre ambos así también sucede en el caso del pH donde no existe mucha diferencia. Marin et al (2010) en su estudio menciona que los grados brix disminuyen en función al tiempo en cambio en la tabla se aprecia que ocurre lo contrario en ambas variedades ya que los grados brix suben esto debido al cambio del almidón que es metabolizado por Saccharomyces boulardii, (Sossa et al, 2008).
Tabla 9.
Monitoreo de °Brix, Acidez y pH.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Negra H$_2$O 24 horas</th>
<th>Negra H$_2$O 48 horas</th>
<th>Chasca SSP 24 horas</th>
<th>Chasca SSP 48 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>°Brix</td>
<td>0.50</td>
<td>0.67</td>
<td>1.67</td>
<td>1.33</td>
</tr>
<tr>
<td>Acidez Ac. Sulfúrico</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Ph</td>
<td>5.03</td>
<td>4.73</td>
<td>5.06</td>
<td>4.81</td>
</tr>
</tbody>
</table>

Se observa la evaluación fisicoquímica correspondiente al pH, Brix y acidez donde claramente se puede apreciar que hay notable diferencia de los grados Brix entre las variedades siendo la variedad Chaska quien presento una lectura mayor ala de la variedad negra sin embargo; en la evaluación de acidez se aprecia una leve diferencia entre ambos así también sucede en el caso del pH donde no existe mucha diferencia.

Tabla 10.
Recuento en placa de Mohos y Levaduras.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Media</th>
<th>DE*</th>
<th>ufc/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negra</td>
<td>26,67</td>
<td>14,05</td>
<td>2,7 X 108</td>
</tr>
<tr>
<td>Chaska</td>
<td>10,67</td>
<td>6,429</td>
<td>6,4 X 107</td>
</tr>
</tbody>
</table>

*Desviación Estándar

Los análisis microbianos fueron significativos ya estos nos muestran la presencia de _Saccharomyces boulardii_ en ambas variedades, en las lecturas en diluciones de hasta 10^7 se halló para la variedad negra un mayor número de colonias a diferencia de la variedad Chaska.
3.2. Influencia de parámetros en la elaboración de Tunta probiótica

Mediante el análisis estadístico se logró obtener los parámetros que tienen mayor influencia en la elaboración de tunta probiótica; de los observados podemos afirmar que la variable que tuvo mayor influencia fue la de variedad negra según se muestra en la Figura 5. Según Sossa et al (2008) en un estudio de almidón de papa como sustrato en el crecimiento de Saccharomyces cerevisiae demostró que el crecimiento de la levadura mencionada se limitaba ya que los gránulos de almidón no podían ser aprovechados en cambio en nuestro estudio la levadura presentó un buen crecimiento ya que los gránulos de almidón de estas variedades en estudio se encontraban a disposición de la levadura.

![Figura 7. Determinación de parámetros de elaboración de tunta probiótica empleando el método Taguchi.](image)
De la misma forma la posición antes propuesta a partir de la Figura 5 esta se puede afirmar mediante el ANOVA mostrada en la Tabla 11 donde el nivel de significancia de la variedad es la más determinante; en cambio las variables de tiempo y medio de cultivo no muestran significancia.

Tabla 11.
ANOVA de parámetros evaluados en la elaboración de tunta probiótica

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>Df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Variedad</td>
<td>10,02778</td>
<td>1</td>
<td>10,02778</td>
<td>43,63736</td>
<td>0,000038</td>
</tr>
<tr>
<td>(2) Tiempo</td>
<td>0,02778</td>
<td>1</td>
<td>0,02778</td>
<td>0,12088</td>
<td>0,734645</td>
</tr>
<tr>
<td>(3) Medio</td>
<td>0,02778</td>
<td>1</td>
<td>0,02778</td>
<td>0,12088</td>
<td>0,734645</td>
</tr>
<tr>
<td>2 by 3</td>
<td>10,02778</td>
<td>1</td>
<td>10,02778</td>
<td>43,63736</td>
<td>0,000038</td>
</tr>
<tr>
<td>Residual</td>
<td>2,52778</td>
<td>11</td>
<td>0,22980</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Análisis de varianza.

De la misma forma la posición antes propuesta a partir de la Figura 5 esta se puede afirmar mediante el ANOVA mostrada en la Tabla 11 donde el nivel de significancia de la variedad es la más determinante; en cambio las variables de tiempo y medio de cultivo no muestran significancia.

3.3. Optimización del producto final a través del Análisis Sensorial y el método Taguchi.

Se realizó el análisis sensorial de perfil de textura: masticabilidad y aceptación general, mediante el uso de una escala hedónica; cuyos resultados son:
3.3.1 Textura

Taba 12
ANOVA para la variable de textura

<table>
<thead>
<tr>
<th>Effect</th>
<th>Sums of Squares</th>
<th>DF</th>
<th>Mean Squares</th>
<th>F</th>
<th>P-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Variedad</td>
<td>10.56250</td>
<td>1</td>
<td>10.56250</td>
<td>7.140845</td>
<td>0.020327</td>
</tr>
<tr>
<td>(2) Tiempo (h)</td>
<td>0.06250</td>
<td>1</td>
<td>0.06250</td>
<td>0.042254</td>
<td>0.840583</td>
</tr>
<tr>
<td>(3) Medio</td>
<td>0.06250</td>
<td>1</td>
<td>0.06250</td>
<td>0.042254</td>
<td>0.840583</td>
</tr>
<tr>
<td>Residual</td>
<td>17.75000</td>
<td>12</td>
<td>1.47917</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Análisis de varianza

En la (Tabla 12), se puede observar que el valor de “P” es menor a 0.005 denotando que en el análisis de varianza se halla significancia; demostrando que la variedad es la que marcó la diferencia en la preferencia en esta evaluación y en lo que respecta al medio de cultivo y tiempo de incubado no se halló diferencias significativas.

3.3.2 Masticabilidad

Taba 13.
ANOVA para la variable de Masticabilidad

<table>
<thead>
<tr>
<th>Effect</th>
<th>Sums of Squares</th>
<th>DF</th>
<th>Mean Squares</th>
<th>F</th>
<th>P-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Variedad</td>
<td>10.56250</td>
<td>1</td>
<td>10.56250</td>
<td>7.140845</td>
<td>0.020327</td>
</tr>
<tr>
<td>(2) Tiempo (h)</td>
<td>0.06250</td>
<td>1</td>
<td>0.06250</td>
<td>0.042254</td>
<td>0.840583</td>
</tr>
<tr>
<td>(3) Medio</td>
<td>0.56250</td>
<td>1</td>
<td>0.56250</td>
<td>0.380282</td>
<td>0.548973</td>
</tr>
<tr>
<td>Residual</td>
<td>17.75000</td>
<td>12</td>
<td>1.47917</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Análisis de varianza
Se observa con respecto a masticabilidad que existe significancia alta para un valor menor a (α > 0.05).

3.3.3 Aceptabilidad

Tabla 14.
NOVA para la variable de Aceptabilidad

<table>
<thead>
<tr>
<th></th>
<th>Effect</th>
<th>Sums of Squares</th>
<th>DF</th>
<th>Mean Squares</th>
<th>F</th>
<th>P-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Variedad</td>
<td>9.00000</td>
<td>1</td>
<td>9.00000</td>
<td>8.640000</td>
<td>0.012386</td>
<td></td>
</tr>
<tr>
<td>(2) Tiempo (h)</td>
<td>0.25000</td>
<td>1</td>
<td>0.25000</td>
<td>0.240000</td>
<td>0.633040</td>
<td></td>
</tr>
<tr>
<td>(3) Medio</td>
<td>0.00000</td>
<td>1</td>
<td>0.00000</td>
<td>0.000000</td>
<td>1.000000</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>12.50000</td>
<td>12</td>
<td>1.041667</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Se observa con respecto a aceptación que existe significancia alta para un valor menor a (α > 0.05).

3.4. Análisis Fisicoquímicos.

Tabla 15.
Análisis proximal de la tunta de dos variedades: Negra y Chaska

<table>
<thead>
<tr>
<th>Variedad</th>
<th>% Humedad</th>
<th>% Ceniza</th>
<th>% Grasa</th>
<th>% Fibra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negra</td>
<td>7.2912 ± 0.0626</td>
<td>0.3189 ± 0.0977</td>
<td>0.0403 ± 0.0239</td>
<td>0.0325 ± 0.0062</td>
</tr>
<tr>
<td>Chaska</td>
<td>12.3700 ± 0.2892</td>
<td>0.3309 ± 0.0210</td>
<td>0.0308 ± 0.0243</td>
<td>0.0240 ± 0.0005</td>
</tr>
</tbody>
</table>

Los valores mostrados en la tabla indican que la variedad chaska tiene valores de humedad mayores respecto a la variedad negra, en cambio el valor de grasa, ceniza y fibra la diferencia no es significativa.
CAPÍTULO V
CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

Los parámetros de elaboración de tunta probiótica empleando Saccharomyces boulardii son: tiempo de incubación de 24 horas a una temperatura de 37 °C, en un medio de Solución Salina Peptonado. Obteniéndose como producto óptimo la tunta probiótica a partir de la variedad de papa (Solanum tuberosum) negra.

La curva de crecimiento microbiano obtenido durante el incubado de Saccharomyces boulardii muestra un crecimiento estable para la variedad negra en una Solución Salina Peptonado. El método estadístico de Taguchi, permitió optimizar las variables de más influencia a partir de un total de 4 tratamientos. Siendo, la variable variedad negra como el de mayor significancia (p< 0.05).

Las características sensoriales evaluadas: aceptabilidad y la masticabilidad, fueron aceptables al ser evaluadas por jueces calificados.
4.2. **Recomendaciones:**

Aplicar modelos matemáticos en la curva de crecimiento microbiano de *Saccharomyces boulardii*.

Aplicación del diseño de mezclas para futuras investigaciones.

Aplicar un análisis de fijación del probiotico en Tunta.

Aplicar un mejor diseño en análisis sensorial.

Aplicar otro método de elaboración de tunta en procesos de pozos.
REFERENCIAS

Acevedo, Romero,& Espejo (2003) Actividad de distintas presentaciones comerciales de
Saccharomyces boulardii.

B. Ferrer Lorente y J. Dalmau Serra Alimentos Funcionales y Saludables.Revista Chilena

una alternativa viable para la retardación en la pudrición del banano (musa

Revista de Gastroenterología del Perú, 25(2), 176-188.

teperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on

Composición de alimentos industrializados. Ministerio de Salud, Instituto Nacional de
Nutrición, Lima-Perú.

Buelvas, Salgado. Gustavo Andrés (2013). Desarrollo y validación de modelos matematicos
predictivos del crecimiento microbiano para estimación de la vida útil en jabon lonchado
empacado al vacio.

Cátedra Microbiología Agrícola. Crecimiento Bacteriano. Facultad de Ciencias agropecuarias, Universidad Nacional De Entre Ríos. 8 p. Disponible en pdf:

De Biomedicina, X. J. C. VIII Congreso Internacional de Ingeniería Bioquímica.

Henríquez M. y Moreno C. Probióticos: Legislación en Marcha. Secretaria de Agricultura,
Ganadería, Pesca y Alimentos. Buenos Aires, Argentina; 2009. Recuperado en URL:

Saccharomyces cerevisiae y su papel como patógeno emergente.

Mamani, M. (1978). El chuno: preparacion, uso, almacenamiento [Elaboracion de fecula de papa,
Peru].

Colombia mínimamente procesados adicionados con microorganismos probióticos
utilizando la ingeniería de matrices.

medio de cultivo a partir de guayaba agria (Psidiumaraca) en el crecimiento de levaduras.

Madigan MT, Martinko JM & Parker J. Brock. Biología de los Microorganismos. 10ª edición.
PearsonEducación, 2009

Nativas del género Candidasp. Revista Colombiana de Biotecnología, 12(2), 116-123.

ANEXOS

Anexo 1. Determinación de pH AOAC 32.018, 1984

Procedimiento:

Calibrar el equipo con buffers fosfato de pH 4.0 y 7.0.

En un vaso de precipitado colocar un volumen aproximadamente a 25.0 ml de la muestra.

Introducir el electrodo del potenciómetro en la muestra y realizar la medición de pH.
Anexo 2. Determinación de acidez AOAC, 947.05, 1990

Procedimiento:

Para dicho análisis se utilizó un equipo de titulación que consiste en una bureta, un vaso de precipitado, un soporte universal y un anillo con su nuez. Se adicionan dos o tres gotas de fenolftaleína (o colorante) y se comienza a titular (dejar caer gota a gota del agente titulante sobre el titilado) hasta obtener un ligero vire a rosa (en el caso de la fenolftaleína) que dure 30 segundos cuando mínimo. Si es muy oscuro, la titulación ha fracasado. Se mide la cantidad de agente titulante gastado (o gasto de bureta) y se utiliza la normalidad de la sustancia.

Se emplea entonces la siguiente fórmula:

\[
Acidez = \frac{(GB)(N)(Peq)}{A} \quad (1)
\]

Donde:

\(GB \) = Gasto de bureta [se mide en] mL.

\(N \) = Normalidad del agente titulante.

\(Peq \) = u.m.a. del ácido de muestra

\(A \) = Alícuota en ml de muestra (titulada).
Anexo 3. Determinación de Brix AOAC, 932.12 1990

Instrumental:

1) Refractómetro Abbé, debidamente calibrado

2) Centrifuga

Procedimiento:

Centrifugar 10 ml de la muestra a 2500 rpm durante 15 minutos o filtrar a través de un lienzo.

Determinar el Índice de Refracción (20°C) en el sobrenadante o en el filtrado y obtener los grados Brix (°Brix) correspondientes.

Fundamento

Una cantidad previamente homogeneizada y seca, medida o pesada del alimento se somete a una extracción con éter de petróleo o éter etílico, libre de peróxidos o mezcla de ambos.

Posteriormente, se realiza la extracción total de la materia grasa libre por soxhlet.

Procedimiento

Transferir cuantitativamente el contenido del cristalizador utilizando en la determinación de agua, a un cartucho de celulosa. Al realizar esta operación es conveniente perforar con la varilla el papel “aluminio” o instalarlo en el cartucho de tal manera que permita la circulación y drenaje continuo del solvente en el cartucho de celulosa. Cubrir con un poco de algodón y colocar en el cuerpo del extractor Soxhlet.

En el balón de extracción colocar 2 o 3 piedras pómez chica y cargar el cuerpo del extractor una vez y media con cloruro de metileno. Extraer durante 4 horas como mínimo, calentando con una intensidad tal que se logre una condensación de 5-6 gotas por segundo.

Una vez finalizada la extracción destilar la mayor parte del éter a baño María, recuperándolo. Pasar luego del extracto a un Erlenmeyer chico tarado, con la ayuda de un poco de solvente. Evaporar en rotavap (en campana) y secar a 100°C durante 30 minutos. Enfriar y pesar referir el dato a % de muestra.

Cálculo y expresión de resultados
\[\% \text{ grasacruda} = \left(\frac{m^2 - m^1}{m} \right) \times 100 \]

(2)

Dónde:

- M peso de la muestra
- m1 tara del matraz solo
- m2 peso matraz con grasa.
Anexo 5. Determinación de Fibra AOAC, 978.10

Procedimiento:

Para dicho análisis se realizó en triplicado, Pesar a 0.1 mg alrededor de 2 g de muestra preparada y transferir en al matraz del aparato de calentamiento a reflujo. Agregar 1.5 a 2.0 g de fibra cerámica preparada, agregar 200 ml de H2SO4 0.255 N, hirviente, gotas de antiespumante y perlas de vidrio, conectar el aparato de calentamiento a reflujo y hervir exactamente durante 30 minutos rotando el matraz periódicamente. Desmontar el equipo y filtrar a través del embudo Büchner tipo California o sus alternativas. Lavar con 50 a 75 ml de agua hirviente, repetir el lavado con 3 porciones de 50 ml de agua o hasta que cese la reacción ácida retornar el residuo al aparato de calentamiento a reflujo y hervir exactamente durante 30 minutos, rotando el matraz periódicamente. Lavar con 25 ml de H2SO4 0.255 N, hirviente, con 3 porciones de 50 ml de aguahirviente y con 25 ml de etanol al 95%, remover el residuo y transferir al crisol secar en estufa a 130 °C por 2 horas, enfriar en desecador y pesar. Incinerar 30 minutos a 600 ± 15 °C, enfriar en desecador y pesar.

\[
\begin{align*}
\% \text{ Fibra cruda} & = \frac{(\text{Perdida de peso en la incineracion} - \text{Perdida de peso del blanco}) \times 100}{\text{Peso de la muestra}} \\
\% \text{ Fibra cruda (base humedada)} & = (\% \text{ Fibra cruda} \times 100) - \% \text{ Humedad muestra original}
\end{align*}
\]

Principio:

El método se basa en la destrucción de la materia orgánica presente en la muestra por calcinación y determinación gravimétrica del residuo.

Procedimiento:

Efectuar el análisis en duplicado. Pesar al 0.1 mg en una cápsula previamente calcinada y tarada (m0) 2 gramos de muestra homogeneizada (m1). Pre calcinar previamente la muestra en placa calefactora, evitando que se inflame, luego colocar en la mufla e incinerar a 550 °C por 8 horas, hasta cenizas blancas o grisáceas. Pre enfriar en la mufla apagada y si no se logran cenizas blancas o grisáceas, humedecerlas con agua destilada, secar en el baño de agua y someter nuevamente a incineración. Dejar enfriar en desecador y pesar (m2). Mezclar cuidadosamente y completamente la muestra con la arena, mediante la varilla de vidrio.

Expresión de resultados

\[
\% \text{ cenizastotales} = \frac{(m2 - m0) \times 100}{(m2 - m0)} \quad (5)
\]

Donde:

m2: masa en gramos de la cápsula con las cenizas
m1: masa en gramos de la cápsula con la muestra
m0: masa en gramos de la cápsula vacía.
Principio:

El método se basa en la determinación gravimétrica de la pérdida de masa, de la muestra desecada hasta masa constante en estufa de aire.

Procedimiento:

Efectuar el análisis en duplicado. Colocar la cápsula destapada y la tapa durante al menos 1 hora en la estufa a la temperatura de secado del producto. Empleando pinzas, trasladar la cápsula tapada al desecador y dejar enfriar durante 30 a 45 min. Pesar la cápsula con tapa con una aproximación de 0.1 mg. Registrar (m1). Pesar 5 g de muestra previamente homogeneizada registrar (m2). Colocar la muestra con cápsula destapada y la tapa en la estufa a la temperatura y tiempo recomendado 105 °C x 5 horas. Tapar la cápsula con la muestra, sacarla de la estufa, enfriar en desecador durante 30 a 45 min. Repetir el procedimiento de secado por una hora adicional, hasta que las variaciones entre dos pesadas sucesivas no excedan de 5 mg (m3).

Cálculo y expresión de resultados

La humedad del producto expresada en porcentaje, es igual a:

\[\text{Humedad} \% = \frac{(M1 - m2) 100}{M3} \]

(6)

Donde:

m1: masa de la cápsula vacía y de su tapa, en gramos
m2: masa de la cápsula tapada con la muestra antes del secado, en gramos
m3: masa de la cápsula con tapa más la muestra desecada, en gramos

Promediar los valores obtenidos y expresar el resultado con dos decimales.
Anexo 8. Diluciones de Agar para análisis microbiológico en la variedad Negra

Anexo 9. Diluciones de agar para análisis microbiológico en la variedad Chaska
Anexo 10. Incubación de *Saccharomyces boulardii* en las variedades Negra y Chaska

Anexo 11. Comparación de crecimiento microbiológico en la variedad Chaska
Anexo 12. Comparación de crecimiento microbiológico en la variedad Negra

Anexo 13. Conteo de UFC en las placas
Anexo 14. Conteo de UFC en las placas con el contador de colonias

Anexo 15. Conteo en cámara de neubauer de la tunta Chaska
Anexo 16. Conteo en cámara de neubauer de la tuna Negra

Anexo 17. Producto final variedad Negra
Anexo 18. Producto final variedad Negra

Anexo 19. Producto final variedad Negra
Anexo 20. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra

Anexo 21. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra
Anexo 22. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra

Anexo 23. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra
Anexo 24. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra y Chaska

Anexo 25. Diluciones de agar para análisis microbiológico de mohos y levaduras en la variedad Negra y Chaska
Anexo 26. Conteo de mohos y levaduras de variedad Negra

Anexo 27. Conteo de mohos y levaduras de variedad Negra
Anexo 28. Conteo de mohos y levaduras de variedad Negra

Anexo 29. Conteo de mohos y levaduras de variedad Chaska
Anexo 30. Conteo de mohos y levaduras de variedad Chaska

Anexo 31. Conteo de mohos y levaduras de variedad Chaska