UNIVERSIDAD PERUANA UNIÓN

FACULTAD DE INGENIERIA Y ARQUITECTURA

Escuela Profesional de Ingeniería Civil

Análisis comparativo del diseño estructural de una edificación regular e irregular de ocho niveles en sistema de pórticos aplicando la norma E.030 2003, 2016 y 2018 diseño sismorresistente en la ciudad de Lima

Tesis para obtener el Título Profesional de Ingeniero Civil

Autor:

Bach. Jorge Eduardo De la cruz Alvarez

Asesor:

Ing. Roberto Roland Yoctún Rios

Lima, octubre 2021

DECLARACIÓN JURADA DE AUTORÍA DE TESIS

Ing. Roberto Roland Yoctún Rios, de la Facultad de Ingeniería y Arquitectura, Escuela Profesional de Ingeniería Civil, de la Universidad Peruana Unión.

DECLARO:

Que el presente trabajo de investigación titulado: "ANÁLISIS COMPARATIVO DEL DISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN REGULAR E IRREGULAR DE OCHO NIVELES EN SISTEMA DE PÓRTICOS APLICANDO LA NORMA E.030 2003, 2016 Y 2018 DISEÑO SISMORRESISTENTE EN LA CIUDAD DE LIMA" constituye la memoria que presenta el Bachiller Jorge Eduardo De la cruz Alvarez para aspirar al título profesional de Ingeniero Civil, cuya tesis ha sido realizada en la Universidad Peruana Unión bajo mi dirección.

Y estando de acuerdo, firmo la presente declaración en Lima a los 28 días del mes de octubre del año 2021.

Ing. Roberto Roland Yoctún Rios

ACTA DE SUSTENTACIÓN DE TESIS

en modalidad virtual u d el secretario: Mg. Leone Ing. Roberto Roland v titulada: "Análisis comp	online sincrónica el Chahuares P Yoctun Rios, c parativo del dis	a, bajo la direcc Paucar y los c con el propósito seño estructur	ión del Señor Presidente del demás miembros: Ing. David o de administrar el acto aca al de una edificación regula	endo las 11:00 horas, se reunieron jurado: Ing. Ferrer Canaza Rojas, Díaz Garamendi y el asesor: démico de sustentación de la tesis ar e irregular de ocho niveles en rresistente en la ciudad de Lima"
del (los)/la(las) bachiller/	es: a) JORGE	EDUARDO	DE LA CRUZ ALVARE	Z
	b)			
				ducente a la obtención del título
profesional de(Nombre del Título Profesio		NIERO CIVI	L	con mención
				as) candidato(a)/s hacer uso del
			. , . , .	nvitó a los demás miembros del
•	•		•	on absueltas por el(los)/la (las)
-		-	deliberaciones y la emisión c	
Posteriormente, el jura	ido procedió a	dejar constand	cia escrita sobre la evaluac	ión en la presente acta, con el
dictamen siguiente:				
Candidato (a): JOR	GE EDUARD	OO DE LA C	RUZ ALVAREZ	
CALIFICACIÓN	Viscoimal	ESCA		Mérito
APROBADO	Vigesimal 15	Literal B-	Cualitativa BUENO	MUY BUENO
AFROBADO	13	В-	BOENO	MOT BOENO
Candidato (b):				
CALIFICACIÓN	Vigesimal	ESCA Literal	ALAS Cualitativa	Mérito
	vigesiiiai	Literal	Guailtativa	
(*) Ver parte posterior				
	onto dal iumada	invité al/les)/	o(lo)(loo) condidato(o)(o o r	ponerse de pie, para recibir la
			entación procediéndose a reg	istrar las firmas respectivas.
Presidente Ing. Ferrer Canaza Rojas				Secretario Mg. Leonel Chahuares Paucar
Asesor Ing. Roberto Roland Yoctun Rios	-	Ing. Dav	mbro vid Díaz mendi	 Miembro
Candidato/a (a) Jorge Eduardo De la Cruz Alvarez	_			Candidato/a (b)

ÍNDICE

RE	SU	MEN	N	2
ΑE	STI	RAC [*]	СТ	3
1.	I	NTR	RODUCCIÓN	3
2.	[DESA	SARROLLO	4
	2.1		Parámetros de análisis	4
3.	ſ	MET	TODOLOGÍA	7
	3.1		Datos y estructuración	7
	3.2		Predimensionamiento	8
	3.3		Estudios de las normativas E.030 2003, 2016 y 2018	8
	3.4		Desarrollo del modelo en el programa computacional Etabs 17	8
	3.5		Análisis comparativo	9
	3.6		Diseño estructural	9
4.	A	٩NÁ	ÁLISIS DE RESULTADOS	9
	4.1		Centro de masas y rigidez	9
	4.2		Pesos sísmicos	10
	4.3		Periodo fundamental (T)	11
	4.4		Comparación de periodos de la E.030 2003, 2016 y 2018	11
	4.5		Estructura regular	12
	2	1.5.1	1. Análisis estático	12
	2	1.5.2	2. Análisis dinámico	14
	4.6		Estructura Irregular	15
	۷	1.6.1	1. Análisis estático	15
	۷	1.6.2	2. Análisis dinámico	17
	4.7	•	Diseño estructural	19
	2	1.7.1	1. Losa aligerada	19
	2	1.7.2	2. Columnas	19
	2	1.7.3	3. Vigas	19
	4	1.7.4	4. Cimentaciones	22
5.	(CON	NCLUSIONES	22
6.	F	RECO	COMENDACIONES	24
7			EDENICIAS	24

Análisis comparativo del diseño estructural de una edificación regular e irregular de ocho niveles en sistema de pórticos aplicando la norma E.030 2003, 2016 y 2018 diseño sismorresistente en la ciudad de Lima

Comparative analysis of the structural design of a regular and irregular building with eight levels in a porticoes system applying the E.030 2003, 2016 and 2018 standard seismic resistant design in the city of Lima

Jorge Eduardo, De la cruz Alvarez¹; Roberto Roland, Yoctun Rios²

RESUMEN

Se presenta el análisis comparativo de las normas E.030 2003, 2016 y 2018 diseño sismorresistente. El estudio de las estructuras mediante el sistema de pórticos para uso de oficinas en la ciudad de Lima se centra en la comparación de periodos de vibración, porcentaje de masa participativa, espectro de diseño, distorsión de entrepiso, fuerza cortante basal estática, dinámica y las fuerzas máximas de diseño (momento flector, cortante y axial), modelado mediante el software Etabs 17. La estructura regular presenta variación de 12,50% de cortante estática y 12,20% para el análisis dinámico según la norma del 2003 en comparación del 2016 - 2018 y la estructura irregular varia en 50% según la norma del 2003 en comparación del 2016, así mismo una variación de -16,67% entre la norma del 2016 y 2018 afectadas directamente por los cambios de irregularidad. En conclusión, la norma del 2018 tiene resultados intermedios considerando periodos modales para ambas estructuras mediante el análisis estático y dinámico.

Palabra clave: norma E.030; análisis comparativo sismorresistente; diseño estructural

ABSTRACT

The comparative analysis of the E.030 2003, 2016 and 2018 seismic-resistant design standards is presented. The study of structures through the porticoes system for office use in the city of Lima focuses on the comparison of vibration periods, percentage of participatory mass, design spectrum, mezzanine distortion, static, dynamic basal shear force and the maximum design forces (bending moment, shear and axial), modeled using the Etabs 17 software. The regular structure presents variation of 12,50% of static shear and 12,20% for the dynamic analysis according to the 2003 standard compared to 2016 - 2018 and the irregular structure varies by 50% according to the 2003 norm compared to 2016, likewise a variation of -16,67% between the 2016 and 2018 norm directly affected by the irregularity changes. In conclusion, the 2018 standard has intermediate results considering modal periods for both structures through static and dynamic analysis.

Keyword: standard E.030; comparative seismic análysis; structural design

1. INTRODUCCIÓN

La norma peruana E.030 diseño sismorresistente ha sido modificada con el paso de los años por diferentes motivos, donde la primera norma data de 1970 y abarcaba las experiencias de los terremotos importantes desde 1940 hasta el 2001, además el cambio del comité Visión 2000 para obtener la norma del 2003 [1]. Pero sus modificaciones continuaron hasta dar con la norma del 2016 y 2018, donde por diferentes estudios numéricos se determinó un nuevo mapa de peligro sísmico a diferencia del 2003, la cual se mantiene hasta la actualidad. [2] afirma que en el Perú la ciudad de Lima tiene mayor probabilidad a generar un sismo de gran magnitud en consecuencia las actualizaciones de la norma sismorresistente E.030 sigue en constante investigación de acuerdo a la zonificación, estructuración, seguridad y economía, por esta razón todos los cambios que se dan en la norma afecta directamente al diseño estructural. Es por ello la importancia de realizar un análisis comparativo y determinar el comportamiento lineal estático y dinámico según las normativas con la ayuda del programa de computación Etabs 17, el cual facilita para obtener la variación de las fuerzas estáticas, dinámicas, desplazamientos y del coeficiente de reducción (**R**) afectadas directamente por los cambios de irregularidad.

Por ello se pretende realizar el análisis comparativo evaluando el comportamiento sísmico de una estructura regular y otra irregular de 8 niveles en la ciudad de Lima considerando las normas [3], [4] y [5]. Además, para las estructuras regulares se determinará la variación que existe en el análisis al considerar los tres periodos que permite la norma y en la estructura irregular la variación en al análisis estático, debido que la norma no lo permite.

2. DESARROLLO

2.1. Parámetros de análisis

Es indispensable definir los parámetros sísmicos más importantes que incrementan o disminuyen las fuerzas de diseño, de acuerdo al cambio de las normas de diseño sismorresistente E.030 2003, 2016 y 2018.

El factor de zonificación (**Z**) en la Tabla 1, se basa en la distribución espacial de la sismicidad observada y las características generales de los movimientos sísmicos. El factor (**Z**) que está en todos los reglamentos del mundo [6], en el Perú se caracteriza por describir la aceleración que tendría el suelo cada 500 años en suelo firme (**S1**) según la E.030 [4] y [5] de lo que antes se consideraba en roca, ahora para considerar en roca al factor (**Z**) se le multiplicara por 0,8. Donde se sigue evaluando el peligro sísmico existente prediciendo probabilísticamente las aceleraciones máximas que podrían ocurrir en cualquier parte del país, utilizando leyes de atenuación de aceleraciones y correlacionando la sismicidad y la tectónica para determinar las fuentes sismogénicas y sus respectivos parámetros sismológicos [7].

Tabla 1. Factor de zonificación

Nor	ma 2003	N	orma 2016 y	2018
Zona	Z	Zona	Z	Variación
3	0,4	4	0,45	13%
2	0,3	3	0,35	17%
1	0,15	2	0,25	-17%
		1	0,10	-33%

Fuente: Norma E.030 2003,2016 y 2018 diseño sismorresistente

El factor de suelo (S), los periodos cortos (TP) y periodos largos (TL) según la norma E.030 son valores que describen las condiciones locales, el factor (S) depende del tipo de suelo y la zona en el 2016 y 2018, así mismo depende de una nueva variable (TL), este se caracteriza por definir el inicio de la zona espectral con desplazamiento constante. Para la zona de Lima los factores de suelo (S) disminuyeron solo para los suelos blandos y malos, pero los suelos característicos de Lima suelos rígidos (S1) la norma del 2016 y 2018 no genero ninguna modificación, de acuerdo al suelo (S1) les corresponde a las tres normas el factor S = 1 y los periodos TP = 0.4 s y TL = 2.5 s.

[8] mencionan la importancia del factor de amplificación sísmica (**C**) y muestran sugerencias para determinar el periodo por Rayleigh o periodo alternativo según [3], además que cambia en zonas de alta actividad sísmica donde podría ocurrir eventos de gran magnitud y mide cuanto amplifica la aceleración en la estructura de acuerdo a las características de sitio. En la Tabla 2

se puede ver los cambios y nuevas condiciones de las normativas, siendo el periodo de la estructura el parámetro principal del cambio del factor (C).

Tabla 2. Factor de amplificación sísmica (C)

Norma	2003	Norma 2016 y 2018		
Condiciones C $C \le 2.5 \qquad 2.5 \cdot \frac{Tp}{T}$		Condiciones	C	
		T < Tp	2,5	
		Tp < T < TL	$C = 2.5 . \frac{Tp}{T}$	
		T > TL	$C = 2.5 \cdot \frac{Tp.Tl}{T^2}$	

Fuente: Norma E.030 2003, 2016 y 2018 diseño sismorresistente

El factor de importancia (**U**) sigue manteniendo el mismo valor de **U=1** para estructuras comunes y el coeficiente de reducción (**R**) presenta algunas discrepancias con diferentes estructuras mientras que para la norma del 2003 son estructuras regulares muchas de ellas presentan irregularidad en la norma del 2016 y 2018 de acuerdo al sistema estructural y su geometría, definiendo los parámetros que involucran a este factor como el coeficiente básico de reducción (**Ro**), irregularidad en altura (**Ia**) e irregularidad en planta (**Ip**). El coeficiente básico de reducción (**Ro**) para pórticos no genero ninguna modificación y continua con el valor **Ro = 8**. Por otro lado, tenemos los cambios de irregularidades en cada actualización de la norma que se presenta en la Tabla 3.

Tabla 3. Irregularidades en planta y en altura

	Irregularidad	Factor Ia e Ip	E .030 2003	E.030 2016	E.030 2018
Ia	Rigidez Piso blando	0,75	$A_1 < 0.85A_2$	$\beta_1 > 1.4\beta_2$ ó $\beta_1 > 1.25 \left(\frac{\beta_2 + \beta_3 + \beta_4}{3} \right)$	$k_1 < 0.7k_2$ δ $k_1 < 0.8 \left(\frac{k_2 + k_3 + k_4}{3} \right)$
14	Resistencia Piso débil Geométrica vertical 0,75		Igual al 2018	$ m V_1 < 0.8~V_2$ $ m L_{total} > 1.3~L_{reducida}$	$V_1 < 0.8 V_2$ $L_{total} > 1.3 L_{reducida}$
Ip	Torsional Esquina entrante	0,75 0,9	Igual al 2018 Igual al 2018	$\Delta_{Ai} > 1.2(\Delta_{CMi})$ $L_{total} > 0.2L_{reducida}$	$\begin{split} \Delta_{Ai} &> 1.3 \left(\frac{\Delta_{Ai} + \Delta_{Bi} + \Delta_{Ci} + \Delta_{Di}}{4} \right) \\ & L_{total} &> 0.2 L_{reducida} \end{split}$
	R		Ro . I*	Ro . Ia . Ip	Ro . Ia . Ip

Nota: (* si existe cualquier irregularidad para la E.030 2003 el I=0,75), (A = área de las secciones transversales de los elementos verticales), (β =distorsión o deriva de entrepiso), (V = Fuerza cortante), (Δ_{Ai} = máximo desplazamiento relativo de entrepiso en un extremo), (Δ_{CM} = desplazamiento relativo del centro de masa) y (k_1 = rigidez lateral del entrepiso). Fuente: Norma E.030 2003, 2016 y 2018 diseño sismorresistente

La cortante basal de la E.030 es la fuerza cortante total que actúa en la base de la estructura, correspondiente a cada dirección de acuerdo al sistema estructural utilizado con los valores de Z, U, C, S, R y multiplicado por el peso sísmico de la estructura, logrando tener la fuerza cortante basal de la estructura mediante el análisis estático y según se mencionan en otros códigos de diseño con alta actividad sísmica [9].

$$V = \frac{Z.U.C.S}{R}.P \tag{1}$$

El método que presenta la E.030 es el análisis dinámico modal espectral sin modificación hasta la norma del 2018, definiendo así la cortante basal mínima que dependerá de su regularidad y el método de combinación cuadrática completa (CQC), que considera una correlación entre los valores modales máximos para así obtener valores más probables de desplazamiento y fuerzas [10].

La Tabla 4 muestra la distribución de la fuerza sísmica en altura según el análisis estático, donde inicialmente la E.030 2003 tenía una distribución lineal, en la norma del 2016 y 2018 se eliminó la fuerza concentrada en el último nivel denominada (**Fa**) y se corrige la distribución lineal con el exponente (**k**) relacionado directamente con el periodo fundamental de las estructuras.

Tabla 4. Distribución de fuerza en altura

_	E.030 2003	E.030 2016 y 2018	
Pariodos (T)	$T > 0.7_{seg.}$	$T \le 0.5_{seg.} \dots k = 1.0$	
Periodos (T)	$F_a = 0.07.T.V \le 0.15.V$	$T > 0.5_{seg.} \dots k = (0.75 + 0.5.T) \le 2$	
Distribución do	D. h.	$Fi = \propto_i V$	
Distribución de fuerzas (Fi)	$Fi = \frac{P_i \cdot h_i}{\sum_{J=1}^{n} P_J \cdot h_J} \cdot (V - F_a)$	$\alpha_i = \frac{P_i. (h_i)^k}{\sum_{J=1}^n P_J. (h_J)^k}$	

Fuente: Norma E.030 2003, 2016 y 2018 diseño sismorresistente

La Tabla 5 muestra los desplazamientos laterales que sufre una estructura después del análisis y sus cambios para estructuras irregulares, mientras las estructuras regulares se han mantenido hasta la norma del 2018.

Tabla 5. Desplazamientos laterales

Desplazamientos								
Estructura E.030 2003 E.030 2016 E.030 2018								
Regular	0,75 . R . d	0,75 . R . d	0,75 . R . d					
Irregular	0,75 . R . d	R . d	0,85 . R . d					

Nota: (D= desplazamiento inelástico lateral), (d=desplazamiento elástico lateral), (R= coeficiente de reducción). Fuente: Norma E.030 2003, 2016 y 2018

3. METODOLOGÍA

Los modelos presentados son estructuras de 8 niveles destinándose para uso de oficinas de computación y están conformados por el sistema de pórticos con elementos estructurales de concreto armado, se caracterizan por ser uno de los sistemas más construidos en la ciudad de Lima y sus características geométricas son el resultado de evaluar diferentes planos y también con el interés de forzar criterios de irregularidad torsional.

Para lograr los objetivos del estudio se presenta un diagrama de flujo de los procesos más importantes partiendo desde los datos y estructuración, predimensionamiento, estudios de las tres normativas, desarrollo del modelo en el programa computacional Etabs 17, condiciones del análisis estructural, análisis comparativo y finalmente el diseño estructural como se muestra en la Figura 1.

Figura 1. Diagrama de flujo de la metodología para el diseño estructural. Fuente: El autor

3.1. Datos y estructuración

La investigación presenta dos estructuras de concreto armado con sistema de pórticos de 8 niveles que se proyecta en la ciudad de Lima por ser una zona con alto grado de peligro sísmico y uso de oficinas de computación. La estructuración está dada por losas, vigas, columnas y la cimentación está apoyada sobre un suelo rígido (S1) grava arenosa medianamente densa GP según la zonificación sísmica del Centro Peruano-Japonés de Investigaciones Sísmicas y Mitigación de Desastres (CISMID) [11]. Así mismo los parámetros geotécnicos se consideran

de acuerdo a los antecedentes e investigaciones realizadas en Lima para el análisis comparativo con una capacidad pórtante admisible "qa" promedio de 40000 kg/m² por medio de zapatas aisladas centradas, desplantadas a una profundidad mínima Df de 1,20 m y el valor del módulo de reacción del suelo (Balasto/ Winkler) en función "qa" de 8000000 kg/m³ [12].

3.2. Predimensionamiento

La sobre carga para el uso de oficinas de computación es de s/c= 250 kg/m^2 y tabiquería de 76 kg/m² considerando el área de techado, volúmenes y peso específico de las mismas, además las propiedades de los materiales utilizados son: peso específico del concreto $\gamma = 2400 \text{ kg/m}^3$, módulo de elasticidad del concreto $E=15000 \times 10000 \times \sqrt{f'c} \text{ kg/m}^2$, módulo de poisson del concreto u=0,2, resistencia a la compresión del concreto $f'_C=2800000 \text{ kg/m}^2$, esfuerzo de fluencia del acero $f'_y=42000000 \text{ kg/m}^2$. Los espacios entre ejes son de 6m para ambas estructuras como se muestra en la Figura 2 y el dimensionamiento de los elementos estructurales basados en la norma de concreto armado [13], siendo las secciones iguales para ambas estructuras y en todos los niveles para realizar la comparación del comportamiento sísmico de acuerdo a las normativas E.030 diseño sismorresistente. La altura por nivel de 3 m y las secciones típicas de las columnas son de 80 cm x 80 cm, las vigas 40 cm x 60 cm, losas aligeradas con espesor de 30 cm para todos los niveles y la cimentación se modelo como fija empotrada considerando también la norma suelos y cimentaciones [14] .

3.3. Estudios de las normativas E.030 2003, 2016 y 2018

El estudio de la norma diseño sismorresistente E.030 se da para conocer los parámetros que influyen directamente al diseño. [15] menciona que la principal causas de falla en los pórticos son los efectos torsionales, inducidas por las irregularidades y características de las estructuras detallándose los parámetros y sus modificaciones en el capítulo del desarrollo y resultado como el factor de zona "Z", importancia "U", amplificación sísmica "C", suelo "S", coeficiente de reducción "R" y el método de análisis.

3.4. Desarrollo del modelo en el programa computacional Etabs 17

En la investigación se utilizó modelos en 3D mediante el programa Etabs 17, siendo este un software innovador y revolucionario evaluando la normativa E.030 [16]. Las estructuras fueron modeladas según el análisis estático y dinámico espectral analizando las cortantes en la base, distribución de fuerzas sísmicas en altura, periodos de vibración, número de modos, porcentaje de masa participativa, espectro de diseño, criterios de combinación cuadrática completa (CQC) y finalmente controlando la distorsión de entrepiso considerando la distorsión límite.

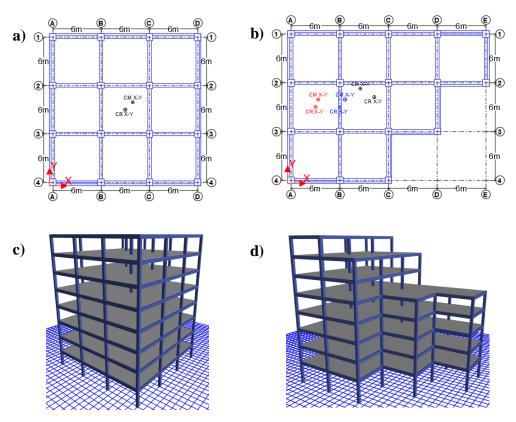
3.5. Análisis comparativo

Para el análisis comparativo se establecen las variables utilizando los parámetros de la norma E.030 diseño sismorresistente descritas anteriormente de acuerdo a los siguientes parámetros: periodos de vibración, porcentaje de masa participativa, espectro de diseño, distorsión de entrepiso, fuerza cortante basal estática, fuerza cortante basal dinámica y las fuerzas máximas de diseño (momento flector, cortante y axial).

3.6. Diseño estructural

El diseño de cada elemento estructural se realiza en base a los resultados del análisis comparativo, encontrando las diferencias entre las normas E.030 2003, 2016 y 2018 diseño sismorresitente para ambas estructuras. Para los cálculos se utilizaron fundamentos de diseño en concreto armado según la E.060 y ACI 318-14 asegurando que las estructuras tengan un buen comportamiento dúctil, siendo esta capaz de sufrir grandes deformaciones bajo cargas de servicio considerando los requisitos, factores, verificaciones, estados límites y cuantías de refuerzo para el diseño de losas aligeradas, columnas y vigas mediante el programa Etabs 17. Las cimentaciones con la norma E.050 y ayuda del programa SAFE, donde se controlaron las condiciones de resistencia "qa" y asentamientos tolerables y diferenciales de las estructuras.

4. ANÁLISIS DE RESULTADOS


4.1. Centro de masas y rigidez

En la Tabla 6 y la Figura 2 se puede ver el centro de masa (C.M) para ambas estructuras considerando una excentricidad del 5%, siendo este el lugar geométrico donde se genera el movimiento y el centro de rigidez (C.R) lugar geométrico donde la estructura se deforma menos.

Tabla 6. Centro de masa y centro de rigidez

		Estr	uctura r	Estructura irregular				
	C.M	C.M	C.R	C.R	C.M	C.M	C.R	C.R
Nivel	X-X	Y-Y	X-X	Y-Y	X-X	Y-Y	X-X	Y-Y
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
8	10,34	10,34	9,4	9,4	3,74	10,34	3,4	9,4
7	10,34	10,34	9,4	9,4	7,04	10,34	6,4	9,4
6	10,34	10,34	9,4	9,4	7,04	10,34	6,4	9,4
5	10,34	10,34	9,4	9,4	8,9209	11,6665	10,6353	10,6353
4	10,34	10,34	9,4	9,4	8,9209	11,6665	10,6353	10,6353
3	10,34	10,34	9,4	9,4	8,9209	11,6665	10,6353	10,6353
2	10,34	10,34	9,4	9,4	8,9209	11,6665	10,6353	10,6353
1	10,34	10,34	9,4	9,4	8,9209	11,6665	10,6353	10,6353

Fuente: El autor

Figura 2. a) planta de la estructura regular, b) planta de la estructura irregular, c) modelación en 3D estructura regular, d) modelación en 3D estructura irregular. Fuente: el autor

4.2. Pesos sísmicos

Las sobrecargas para el peso sísmico se utilizan las mencionadas en el predimensionamiento, considerando el 100% de la carga muerta CM y 25% de la carga viva CV por ser de categoría C de acuerdo al uso de la estructura según indica la E.030. Asimismo, la gravedad g=9,8066 m/s² para las masas traslacionales "X" e "Y" y considerando las inercias y sus respectivas áreas para la masa rotacional en "Z" como se muestra en la Tabla 7.

Tabla 7. Pesos sísmicos de las estructuras

	Peso de las estructuras 100%CM + 25% CV										
	Estructura regular Estructura irregular										
Nivel	Peso (ton)	Masa X e Y (ton.s²/m)	Masa Z (ton.s ² .m)	Peso (ton)	Masa X e Y (ton.s²/m)	Masa Z (ton.s ² m)					
8	277,626	28,310	1667,649	112,818	11,504	383,169					
7	312,970	31,914	1879,953	219,286	22,361	963,908					
6	312,970	31,914	1879,953	219,286	22,361	963,908					
5	312,970	31,914	1879,953	322,047	32,840	2276,559					
4	312,970	31,914	1879,953	322,047	32,840	2276,559					
3	312,970	31,914	1879,953	322,047	32,840	2276,559					
2	312,970	31,914	1879,953	322,047	32,840	2276,559					
1	337,546	34,420	2027,577	348,159	35,502	2461,146					
TOTAL	2492,995	254,215	14974,944	2187,739	223,087	13878,367					

Fuente: el autor

4.3. Periodo fundamental (T)

En la Tabla 8 se puede mostrar que en el quinto modo supera el 90% de masa participativa en las dos estructuras y en ambas direcciones. La estructura regular tiene periodo fundamental de $T_x = 0,728_s$ y $T_y = 0,728_s$ y la estructura irregular con periodo fundamental de $T_x = 0,619_s$ y $T_y = 0,664_s$. El periodo dependerá directamente de la rigidez de las estructuras y por consecuentes se refleja en sus modos de vibración.

Tabla 8. Periodos y masas participativas

		Estructura regu		Estructura irregular			
Periodo Modo (seg.)		Masa Participativa Acumulada X-X (%)	Masa Participativa Acumulada Y-Y (%)	Periodo (seg.)	Masa Participativa Acumulada X-X (%)	Masa Participativa Acumulada Y-Y (%)	
1	0,744	39,01	39,01	0,664	0,03	73,23	
2	0,728	80,17	80,17	0,619	80,94	73,26	
3	0,553	82,32	82,32	0,446	80,94	81,63	
4	0,232	87,30	87,30	0,222	88,32	84,14	
5	0,227	92,57	92,57	0,216	91,13	91,28	
6	0,173	92,86	92,86	0,165	91,36	91,81	

Fuente: el autor

4.4. Comparación de periodos de la E.030 2003, 2016 y 2018

En la Tabla 9 podemos apreciar que los periodos de la norma sismorresistente tiene una variación máxima de 17,61% para la estructura regular comparando el periodo modal con el alternativo y para la estructura irregular una variación máxima en la dirección X-X y Y-Y de 30,42% y 27,27% respectivamente siendo la comparación del periodo normativo con el alternativo quien da mayores valores del factor de amplificación sísmica (C), se optó por trabajar con los periodos normativos y modales porque son las más utilizadas en diseño sísmico.

Tabla 9. Variación de periodos

	Estructura	ı regular	Estructura irregular		
Periodos	E.030 2003, 2016 y 2018	Variación (%)	E.030 2003, 2016 y 2018	Variación (%)	
Tx Normativo (seg)	0,686	6,12	0,686	10,82	
Tx Modal (seg)	0,728	17,61	0,619	17,68	
Tx Alternativo (seg)	0,619	10,82	0,526	30,42	
Ty Normativo (seg)	0,686	6,12	0,686	3,31	
Ty Modal (seg)	0,728	17,61	0,664	23,19	
Ty Alternativo (seg)	0,619	10,82	0,539	27,27	

Fuente: el autor

4.5. Estructura regular

4.5.1. Análisis estático

La expresión de la cortante estática es la resistencia que se debe dar a una estructura para que tenga un buen comportamiento ante los terremotos, lográndose entender que no colapsen en terremoto de gran magnitud y que no se agrieten demasiado en terremotos pequeños. La ingeniería sigue en constante estudio de cada parámetro sísmico normativo, haciendo teorías que se van mejorando con el tiempo y se van adaptando a la realidad.

En la Tabla 10 se observa los parámetros sísmicos para estructuras proyectadas en la ciudad de Lima con tipo de suelo rígido (S1) y uso común (U), factor de amplificación sísmica (C), coeficiente de reducción (R) para pórticos y el cambio en la zonificación (Z) por la actualización de la norma del 2003 al 2016 – 2018 presentando una variación máxima de 6,17% de las cortantes estáticas entre el periodo normativo y periodo modal para cada normativa E.030. Así mismo una variación del 12,50% en las cortantes utilizando periodos normativos o modal según la norma del 2003 en comparación del 2016-2018.

Tabla 10. Variación de la cortante estática

	E.030	2003	E.030	2016	E.030	2018
	T	T	T	T	T	T
	Norma	Modal	Norma	Modal	Norma	Modal
	X-Y	X-Y	X-Y	X-Y	X-Y	X-Y
Z	0,4	0,4	0,45	0,45	0,45	0,45
U	1	1	1	1	1	1
\mathbf{C}	1,4583	1,3736	1,4583	1,3736	1,4583	1,3736
\mathbf{S}	1	1	1	1	1	1
R	8	8	8	8	8	8
ZUCS/R	0,07292	0,06868	0,08203	0,07726	0,08203	0,07726
Peso(ton)	2492,995	2492,995	2492,995	2492,995	2492,995	2492,995
V Estática(ton)	181,7809	171,2222	204,5035	192,625	204,5035	192,625
Variación* (%)	6,	17	6,	17	6,	17
Variación** (%)			12	,50		

Nota: (T= periodo), (V= cortante), (*= variación entre periodos) y (**= variación entre normas).

Fuente: el autor

Las fuerzas laterales se distribuyen para todos los pisos como se muestra en la Figura 3, existiendo fuerzas que dependen de periodos **T** normativos y modales. De acuerdo al periodo normativo existe un incremento de 17,16% en el último nivel que decrece ligeramente hasta el primer nivel y de acuerdo al periodo **T** modal existe descenso de -1,62% para el ultimo nivel y un incremento de 22,68% en el penúltimo nivel que decrece ligeramente hasta el primer nivel, según la norma del 2003 en comparación del 2016-2018.

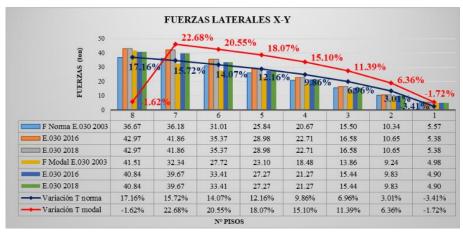


Figura 3. Variación de las fuerzas laterales en X-Y. Fuente: el autor

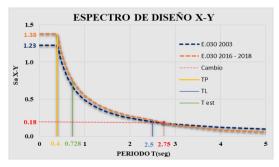

Las derivas inelásticas para estructuras regulares no tienen ninguna modificación desde la norma del 2003, por lo que los desplazamientos laterales se mantienen multiplicándose por 0,75 "R" los resultados obtenidos del análisis lineal y elástico con las solicitaciones reducidas. Logrando ver en la Figura 4, las derivas máximas inelásticas en ambas direcciones de acuerdo a fuerzas que dependen de periodos T normativos y modales, se determina que el incremento de las fuerzas laterales para la norma del 2016 – 2018 afectan directamente a la deriva y según el periodo T normativo mientras la norma del 2003 presenta una distorsión máxima en el tercer nivel de 0,00515 para la norma del 2016 y 2018 con una distorsión máxima de 0,00585 llegando a tener una variación de 13,59% y según el periodo T modal mientras la norma del 2003 presentaba una distorsión máxima en el tercer nivel de 0,00488 para la norma del 2016 y 2018 la distorsión máxima es de 0,00552 llegando a tener una variación de 13,12%. También se logra cumplir con la deriva máxima de 0,007 que permite la norma peruana E.030.

Figura 4. Variación de las derivas máximas inelásticas X-Y. Fuente: el autor

4.5.2. Análisis dinámico

En la Figura 5 se presentan los dos espectros de diseño por que la norma del 2016 y 2018 son iguales en ambas direcciones, presentando las modificaciones de las normas en donde se incrementó las pseudo aceleraciones de 1,23 a 1,38 m/s² de la norma 2003 a 2016-2018 respectivamente y en las normas del 2016 y 2018 se modifica la curvatura del último sector para periodos mayores a **TL**, siendo estas aceleraciones menores en comparación con la norma del 2003.

Figura 5. *Variación de espectros de diseño X-Y.* Fuente: el autor

En la Figura 6, las derivas máximas inelásticas en ambas direcciones se incrementaron por los cambios de los espectros de diseño del 2016 y 2018. Según la norma del 2003 se tiene una distorsión máxima en el tercer nivel de 0,0038 y para la norma del 2016 y 2018 presenta una distorsión máxima de 0,0043 llegando a tener una variación de 13,16%. Pero se logra cumplir con la deriva máxima de 0,007 que permite la norma peruana E.030.

Figura 6. Variación de la deriva máxima inelástica X-Y. Fuente: el autor

La norma E.030 del 2003, 2016 y 2018 considera que la fuerza cortante basal en el primer entrepiso no puede ser menor que el 80% del valor calculado según el análisis estático. En la Tabla 11 se muestran las cortantes estáticas y dinámicas según periodos **T** normativos y modales obteniendo un factor de escala (0,8Vestática/Vdinámica) de 1,0401 y 1 para poder cumplir con la cortante mínima y obtener finalmente una cortante basal corregida (V basal).

Tabla 11. Cortante basal corregida

Norma	Dirección	V estática (ton)	V dinámica (ton)	Factor Esc. (F)	V basal (ton)
E.030 2003	T Norma X-Y	181,7809	140,6888	1,0401	146,3304
	T Modal X-Y	171,2222	140,6888	1	140,6888
E.030 2016	T Norma X-Y	204,5035	158,28	1,0401	164,6270
	T Modal X-Y	192,6250	158,28	1	158,28
E.030 2018	T Norma X-Y	204,5035	158,28	1,0401	164,6270
	T Modal X-Y	192,6250	158,28	1	158,28

Fuente: el autor

Las fuerzas máximas de diseño surgen en las columnas del primer piso y considerando que ambas direcciones son iguales por ser una estructura regular. Las fuerzas dependerán del análisis estático, dinámico, periodo **T** normativa, modal y las actualizaciones de las normas E.030 2003, 2016 y 2018. Las fuerzas máximas son de los pórticos (2-2) y (C-C) en la dirección XX – YY como se muestra en la Figura 7, según las fuerzas estáticas del periodo **T** modal comparando la norma del 2003 con la 2016 y 2018 se tiene una variación de 11,96%, 12,92% y 12,62% de fuerzas axiales, cortante y momentos flectores respectivamente y para las fuerzas dinámicas con un 12,5% en fuerzas axiales, cortantes y momentos flectores y aun así ningún pórtico supera el 30% de cortante basal por lo que no presenta redundancia estructural y cumple con las distorsiones calculadas anteriormente.

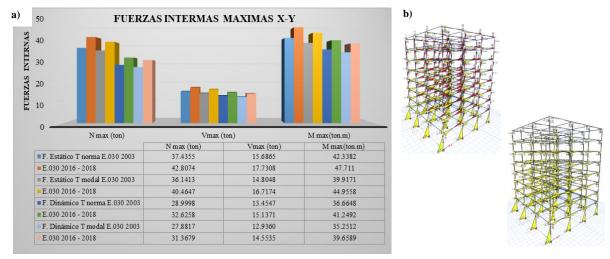


Figura 7. a) Fuerzas internas de diseño. b) modelación de la estructura regular. Fuente: el autor

4.6. Estructura Irregular

4.6.1. Análisis estático

La norma del 2003 considera ¾ del coeficiente "R" si presenta irregularidad, la estructura tiene irregularidad en altura de geometría vertical y en planta esquina entrante calculado según la Tabla 3. Por ello se considera 0,75 en Ip para ambas direcciones.

La norma del 2016 considera factores de acuerdo al tipo de irregularidad que se presente en cada dirección. La estructura presenta irregularidad en altura geometría vertical Ia=0,9 y rigidez - piso blando Ia=0,75 en ambas direcciones, considerando irregularidad de rigidez – piso blando por ser el menor valor cuando la distorsión de entrepiso es mayor que 1,25 veces el promedio de las distorsiones de entrepiso en los tres niveles superiores adyacentes. También presenta irregularidad en planta de esquina entrante Ip=0,9 en ambas direcciones y torsión Ip=0,75 en la dirección YY, considerando irregularidad torsional por ser el menor valor cuando el desplazamiento máximo relativo de entrepiso en un extremo es mayor que 1,2 veces el desplazamiento relativo del centro de masa. Por ello según lo mencionado y calculado de acuerdo a la Tabla 3 se tiene un Ia= 0,75 y Ip=0,75 para ambas direcciones.

La norma del 2018 considera factores de acuerdo al tipo de irregularidad que se presenta en cada dirección. La estructura presenta irregularidad en altura geometría vertical Ia=0,9 y también presenta irregularidad en planta de esquina entrante Ip=0,9 en ambas direcciones y torsión Ip=0,75 en la dirección YY, considerando irregularidad torsional por ser el menor valor cuando el desplazamiento máximo relativo de entrepiso en un extremo es mayor que 1,3 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso. Por ello según lo mencionado y calculado de acuerdo a la Tabla 3 se tiene un Ia= 0,9 y Ip=0,75 para ambas direcciones.

Con variación máxima de 50% de las cortantes estáticas entre la norma del 2003 y 2016, así mismo una variación de -16,67% entre la norma del 2016 y 2018 para ambas direcciones como se muestra en la Tabla 12.

Tabla 12. Variación de la cortante estática

	E.030 2003		E.030 2016		E.030 2018	
	X	Y	X	Y	X	Y
$\overline{\mathbf{z}}$	0,4	0,4	0,45	0,45	0,45	0,45
U	1	1	1	1	1	1
\mathbf{C}	1,6155	1,5060	1,6155	1,5060	1,6155	1,5060
S	1	1	1	1	1	1
Ia	1	1	0,75	0,75	0,9	0,9
Ip	0,75	0,75	0,75	0,75	0,75	0,75
Ro	8	8	8	8	8	8
R	6	6	4,5	4,5	5,4	5,4
ZUCS/R	0,1077	0,1004	0,1616	0,1506	0,1346	0,1255
Peso(ton)	2187,739	2187,739	2187,739	2187,739	2187,739	2187,739
V Estática(ton)	235,6208	219,6525	353,4312	329,4788	294,5260	274,5657
Variación* (%)	50					
Variación** (%)	-16,67					

Nota: (*=variación de E.030 2003 y 2016) y (**=variación de E.030 2016 y 2018). Fuente: el autor

4.6.2. Análisis dinámico

Se presentan los espectros de diseño en la Figura 8 de la norma 2003, 2016 y 2018 para ambas direcciones, presentando las modificaciones de las normas en donde se incrementó las pseudo aceleraciones de 1,63 a 2,45 m/s² y luego se reduce a 2,04 m/s² de la norma 2003, 2016 y 2018 respectivamente y en las normas del 2016 y 2018 se modifica la curvatura del último sector para periodos mayores a (TL), siendo estas aceleraciones menores en comparación con la norma del 2003.

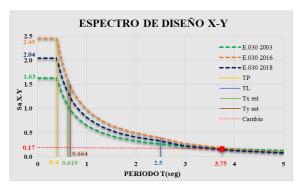


Figura 8. Variación de los espectros de diseño. Fuente: el autor

En la Figura 9, las derivas máximas inelásticas en ambas direcciones se modificaron por los cambios de los espectros de diseño. Para la dirección XX según la norma del 2003 se tiene una distorsión máxima en el segundo nivel de 0,0036, incrementándose para la norma del 2016 con una distorsión máxima de 0,0054 con variación entre sí de 50% y luego decrece para la norma del 2018 con distorsión máxima de 0,0046 y variación de -14,81%. De la misma manera para la dirección YY según la norma del 2003 se tiene distorsión máxima en el segundo nivel de 0,0033, incrementándose para la norma del 2016 con distorsión máxima de 0,0049 con una variación entre sí de 48,48% y luego decrece para la norma del 2018 con distorsión máxima de 0,0042 y variación de -14,29%.

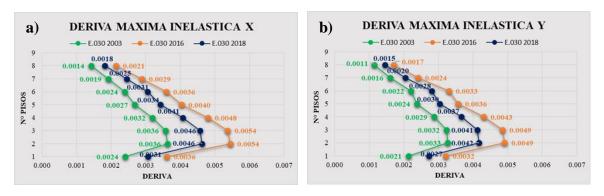


Figura 9. a) variación de derivas X-X. b) variación de derivas Y-Y. Fuente: el autor

La norma E.030 del 2003, 2016 y 2018 considera que la fuerza cortante basal en el primer entrepiso no puede ser menor que el 90% del valor calculado según el análisis estático. En la Tabla 13 se muestran las cortantes estáticas y dinámicas par ambas direcciones obteniendo un factor de escala (0,9Vestática/Vdinámica) de 1,0762 y 1,1065 para poder cumplir con la cortante mínima y obtener finalmente una cortante basal corregida (V basal).

 Tabla 13. Cortante basal corregida

Norma	Dirección	V estática (ton)	V dinámica (ton)	Factor Esc. (F)	V basal (ton)
E.030 2003	X	235,6208	197,0464	1,0762	212,0613
	Y	219,6525	178,6647	1,1065	197,6925
E.030 2016	X	353,4312	295,5702	1,0762	318,0926
	Y	329,4788	267,9954	1,1065	296,5369
E.030 2018	X	294,5260	246,3086	1,0762	265,0773
	Y	274,5657	223,335	1,1065	247,1202

Fuente: el autor

En la figura 10 las fuerzas máximas de diseño surgen en las columnas del primer piso considerando que ambas direcciones son diferentes por ser una estructura irregular. Las fuerzas dependerán del análisis estático, dinámico, dirección y las actualizaciones de las normas E.030 2003, 2016 y 2018. Las fuerzas máximas son de los pórticos (2-2) y (A-A) en la dirección XX – YY respectivamente con una variación similar al de las cortantes estáticas en la Tabla 12 y considerando que dichos pórticos superan el 30% de la cortante basal será 1,25 veces su valor para ambas direcciones, además según las fuerzas estáticas y dinámicas en la dirección Y-Y de la norma 2018 tiene una variación de 13,53%, 5,65% y 4,55% de fuerzas axiales, cortante y momentos flectores respectivamente.

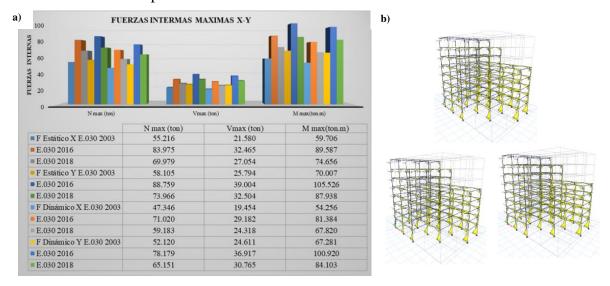
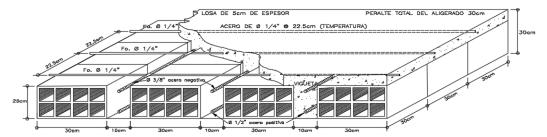



Figura 10. a) Fuerzas internas de diseño. b) modelación de la estructura irregular. Fuente: el autor

4.7. Diseño estructural

4.7.1. Losa aligerada

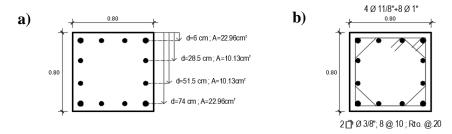

La losa aligerada en una dirección no tiene ninguna modificación porque se diseñan por cargas de gravedad transmitiendo todas sus cargas a las vigas, además, sirven como diafragma rígido para cada nivel y detallando las dimensiones en la Figura 11.

Figura 11. Detalles de la losa aligerada en una dirección. Fuente: el autor

4.7.2. Columnas

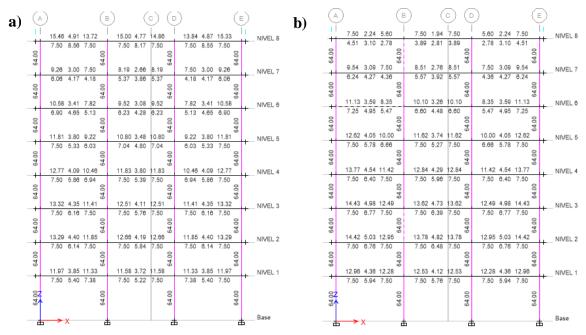
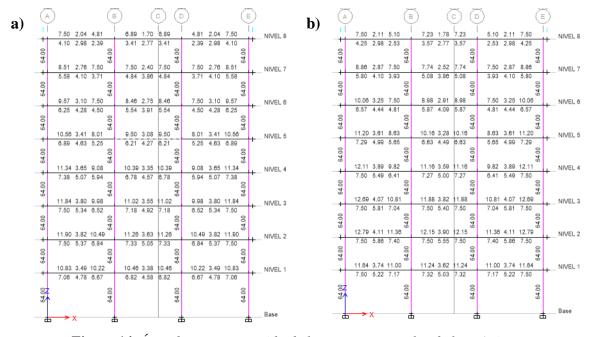
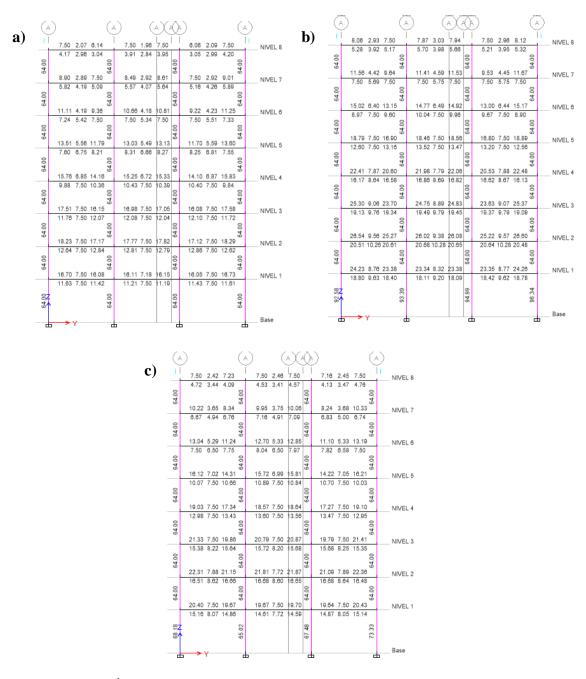

En la figura 12, las columnas no presentaron modificaciones por que se trabajó con una sección cuadrada de 80 cm la cual tenía que cumplir con las tres normativas para poder realizar la comparación de cada norma, así mismo para la cuantía solo cumplió con la mínima que es el 1% pero en los análisis estáticos y dinámicos se logra mostrar su variación y sus fuerzas de diseño de cada norma.

Figura 12. a) distribución en la columna y b) acero en la columna. Fuente: el autor


4.7.3. Vigas

Las vigas si mostraron modificaciones considerando que la norma 2016 y 2018 son iguales para estructuras regulares a diferencia de las estructuras irregulares que si presentan cambios en cada actualización. Las estructuras regulares según el análisis estático mediante periodos modales en los pórticos más esforzados tienen una diferencia de 0,9cm² de la norma 2003 a 2016 para ambos momentos positivos y negativos, por tal motivo se cambió de sección de acero 5/8" a 3/4" solo para momentos positivos porque para momentos negativos se considera una sección de acero la cual cubre los momentos del 2003 y 2016 como se muestra en la Figura 13.


Figura 13. Área de acero requerido de la estructura regular de los pórticos (2-2) y (C-C). a) E.030 2003. b) E.030 2016-2018. Fuente: El autor

Las estructuras regulares según el análisis dinámico en los pórticos más esforzados tienen una diferencia de 0,8 cm² de la norma 2003 a 2016 para ambos momentos positivos y negativos, pero a pesar de la mínima diferencia con el análisis estático las secciones comerciales de acero se tendrá la misma distribución como se muestra en la Figura 14.

Figura 14. Área de acero requerido de la estructura regular de los pórticos (2-2) y (C-C). a) E.030 2003. b) E.030 2016-2018. Fuente: El autor

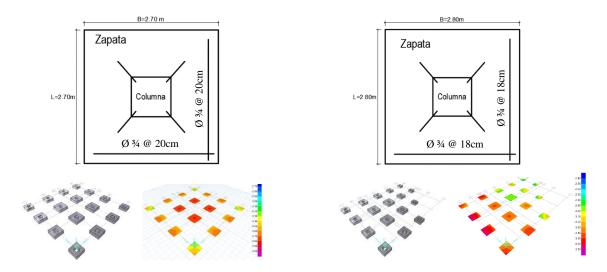

Las estructuras irregulares según el análisis dinámico en los pórticos más esforzados requieren área de acero de 16,70 cm², 24,26 cm², 20,43 cm² según la norma del 2003, 2016 y 2018 en la dirección más desfavorable Y-Y como se muestra en la Figura 15. Validando los resultados del análisis comparativo y los efectos que pueden ocasionar las actualizaciones de las normativas y resultado del incremento de las cortantes en la base para la norma del 2003 al 2016 y la reducción para la norma del 2016 al 2018 se puede apreciar en las siguientes figuras.

Figura 15. Área de acero requerido de la estructura irregular de los pórticos (A-A) en la dirección (Y-Y). a) E.030 2003. b) E.030 2016. c) E.030 2018Fuente: El autor

4.7.4. Cimentaciones

En el estudio no se considera zapatas aisladas esquineras y medianeras por lo que convencionalmente no se utiliza en este tipo de proyectos, las cimentaciones están conformadas por zapatas aisladas centradas o concéntricas con un espesor de 80 cm y las secciones como se muestra en la Figura 16 según el análisis. Las cimentaciones son afectadas y generan cambios por las fuerzas sísmicas, en las estructuras regulares su espaciamiento cambia hasta \pm 3 cm y las estructuras irregulares hasta \pm 5cm según la E.030 2003, 2016 y 2018.

Figura 16. Zapatas aisladas centradas. a) estructura regular ejes (2-C). b) estructura irregular ejes (2-B). Fuente: El autor

5. CONCLUSIONES

La estructura regular presenta una variación máxima de periodos fundamentales de 17,61% comparando el periodo modal y alternativo, así mismo la estructura irregular en la dirección X-X de 30,42% y en Y-Y de 27,27% comparando el periodo normativo y alternativo.

La comparación se realizó utilizando periodos normativos y modales, considerando que las normas del 2016 y 2018 son iguales para estructuras regulares con una variación de cortantes de 6,17% entre periodos y 12,50% según la norma del 2003 en comparación del 2016-2018. En consecuencia, la fuerza lateral según el periodo normativo tendrá un incremento de 17,16% en el último nivel, variación de 13,59% de distorsión en el tercer nivel y la fuerza de acuerdo al periodo modal de -1,62% para el ultimo nivel, incremento de 22,68% en el penúltimo nivel y una variación de 13,12% de distorsión en el tercer nivel según la norma del 2003 en comparación del 2016-2018. El análisis dinámico para estructuras regulares tiene un incremento

en los espectros de diseño en 12,20% y un ligero descenso de la curvatura para periodo largos. En consecuencia, incremento de distorsión máxima en el tercer nivel de 13,16% según la norma del 2003 en comparación del 2016-2018.

Las fuerzas máximas de diseño son de los pórticos (2-2) y (C-C), según las fuerzas estáticas del periodo modal obteniendo una variación de 11,96%, 12,92% y 12,62% de fuerzas axiales, cortante y momentos flectores respectivamente y para las fuerzas dinámicas con un 12,5% en fuerzas axiales, cortantes y momentos flectores, reflejando esta variación en el diseño estructural de las vigas con una variación de 0,9cm² y 0,8cm² en área de acero del análisis estático y dinámico correspondientemente según la norma del 2003 en comparación del 2016-2018.

La estructura irregular según la norma 2003 presenta irregularidad de geometría vertical y esquina entrante, la norma del 2016 rigidez – piso blando y torsión y la norma del 2018 geometría vertical y torsión en planta como en altura respectivamente. Generando variación directa a las cortantes estáticas, espectros de diseño, distorsión y fuerzas máximas de diseño en 50% entre la norma del 2003 y 2016, así mismo una variación de -16,67% entre la norma del 2016 y 2018 para ambas direcciones, reflejando esta variación en el diseño estructural de las vigas con área de acero de 16,70 cm², 24,26 cm², 20,43 cm² según la norma del 2003, 2016 y 2018 en la dirección más desfavorable Y-Y del pórtico (A-A).

La variación que existe en fuerzas estáticas comparando con las fuerzas dinámica en la dirección Y-Y de la norma 2018 tiene una variación de 13,53%, 5,65% y 4,55% de fuerzas axiales, cortante y momentos flectores respectivamente, fuerzas que dependen de periodos modales por ello su variación es mínima a comparación de periodos normativos o alternativos en donde su variación será más crítica, por consecuente este tipo de estructuras con irregularidad de geometría vertical y torsión se puede diseñar según el análisis estático considerando periodos modales.

El diseño estructural se realizó de acuerdo a las normas peruanas, por lo que estas son basadas a los criterios estructurales de la norma del ACI logrando comprobar la similitud que existe en los resultados y la confiabilidad que brinda para el diseño.

6. RECOMENDACIONES

Es importante analizar cada parámetro sísmico y sus modificaciones desde el factor de zonificación que sigue en cambio por los estudios amplios de peligro sísmico, factor de amplificación y los cambios por los espectros de desplazamientos y el factor de suelo que ya no mide cuanto amplifica un suelo sino la diferencia de estar en un suelo bueno o suelo malo.

Es recomendable utilizar periodos alternativos y normativos a diferencia de periodos modales para estructuras regulares y en estructuras irregulares lo más adecuado es utilizar periodos alternativos o modales a diferencia de utilizar periodos normativos por lo que estas las esforzaran más estructuralmente como se puede ver en el análisis.

Se recomienda utilizar la norma del 2016-2018 para estructuras regulares, considerando que la variación sea mínima, pero será más conservadora y las estructuras con irregularidad de geometría vertical y torsión se debe diseñar con la norma del 2016 mediante el análisis dinámico o mediante el análisis estático utilizando periodos modales.

La importancia de identificar las irregularidades de una estructura, la cual se reflejará en desplazamientos y fuerzas internas mayores, siendo estas favorables para el diseño estructural con mayor resistencia y rigidez en las estructuras.

7. REFERENCIAS

- [1] J. Yepez, "Desempeño sismico de edificaciones esenciales," *Propues. Vis. 2000*, no. 65, pp. 65–86, 1996.
- [2] C. & Condori and H. Tavera, "ÁREAS PROBABLES DE RUPTURA SÍSMICA EN EL BORDE OCCIDENTAL DEL PERÚ, A PARTIR DE LA VARIACIÓN DEL PARÁMETRO 'b," *Soc. Geol. del Perú SGP*, vol. 36, no. 1997, pp. 23–36, 2006.
- [3] N.T.E, "Norma técnica de edificación," SENCICO, pp. 1–45, 2003.
- [4] R.N.E, "DECRETO SUPREMO N ° 002-2014-VIVIENDA," SENCICO, 2016.
- [5] R.N.E, "RM-355-2018-VIVIENDA (2).pdf," SENCICO, 2018.
- [6] S. Hampshire De C. Santos, L. Zanaica, C. Bucur, and S. De Souza Lima, "Comparative Study of Codes for Seismic Design of Structures," *Math. Model. Civ. Eng.*, vol. 9, no. 1, pp. 1–12, 2013.
- [7] J. L. C. Aedo and J. E. A. Hurtado, "Peligro sísmico en el perú," *Peligro Sism. En El Peru*, no. 1, p. 19, 1993.
- [8] C. Aksoylu, A. Mobark, M. H. Arslan, and I. H. Erkan, "A comparative study on

- ASCE 7-16, TBEC-2018 and TEC-2007 for reinforced concrete buildings," *Rev. la Constr.*, vol. 19, no. 2, pp. 282–305, 2020.
- [9] C. Zajac and D. Todd, "A Comparative Analysis for Base Shear Calculations between Six Countries With Moderate Seismic Activity," *AEI*, pp. 567–580, 2015.
- [10] R. Salinas Basueldo, "Fundamentos Del Analisis Dinamico De Estructuras," *Univ. Nac. ed Ing.*, pp. 1–24, 2013.
- [11] A. Jorge, M. Jorge, M. Jose, and H. Carlos, "AVANCES EN LA MICROZONIFICACION SISMICA DE LIMA, PERÚ," *CISMID*, vol. 1, p. 12, 1991.
- [12] H. J. Maco Sarmiento, "Análisis y diseño de una edificación multifamiliar de siete pisos con muros de ductilidad limitada (tesis de titulación)," *Pontif. Univ. Católica del Perú*, 2014.
- [13] NTE E.060, Reglamento Nacional de Edificaciones. Norma E.060 Concreto Armado. 2016.
- [14] NTE E.050, "Suelos Y Cimentaciones," *El Peru.*, pp. 22–68, 2018.
- [15] J. Landingin, H. Rodrigues, H. Varum, A. Arêde, and A. Costa, "Comparative Analysis of RC Irregular Buildings Designed According to Different Seismic Design Codes," *Open Constr. Build. Technol. J.*, vol. 7, no. 1, pp. 221–229, 2014.
- [16] R. Medina, "Determinación del nivel de desempeño de un edificio habitacional estructurado en base a muros de hormigón armado y diseñado según normativa chilena," *Obras y Proy.*, no. 23, pp. 63–77, 2018.