• English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
Políticas   Declaración de Budapest  
  • Comunidades
  • Todo DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Willy Henry, Gonzales Garcia"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Un enfoque híbrido de IA para predecir el rendimiento académico en estudiantes de EBR
    (Universidad Peruana Unión, 2025-05-08) Willy Henry, Gonzales Garcia; Cordero Miranda, Zindel Mayeli Key; Abanto Ramírez, Carlos Daniel
    El aprendizaje automático ha avanzado significativamente en los últimos años y se utiliza en la educación superior para realizar diversos tipos de análisis de datos. Si bien es cierto que la literatura muestra la aplicación de algoritmos de aprendizaje automático para predecir el rendimiento en la educación universitaria, no se encuentran aplicaciones en EBR, mucho menos en instituciones privadas de carácter confesional, lo que brinda una oportunidad para estudiar la predicción en estas instituciones. Para abordar esta brecha, esta investigación tiene como objetivo proponer un enfoque predictivo como herramienta de soporte de decisiones para la educación básica regular, utilizando técnicas de aprendizaje automático. Entre las técnicas utilizadas, se analizaron tres modelos de aprendizaje automático (Regresión logística, Máquina de vectores de soporte y Bosque aleatorio), junto con modelos de aprendizaje profundo (AlexNet, Unidad recurrente compuerta y Unidad recurrente compuerta bidireccional), así como modelos de conjunto. No obstante, el modelo de conjunto, que combina técnicas de aprendizaje profundo y aprendizaje automático, es el preferido debido a sus métricas de rendimiento de exactitud, precisión y sensibilidad superiores.

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Política de privacidad
  • Acuerdo de usuario final
  • Enviar Sugerencias