Redes neuronales artificiales para la predicción de propiedades mecánicas de los suelos

Cargando...
Miniatura

Fecha

2021-11-09

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad Peruana Unión

Resumen

En proyectos viales es importante obtener un correcto valor de las propiedades mecánicas de los suelos, dado que estos llegan a tener una gran in-fluencia en los diseños del pavimento. En mención a esto, realizar ensayos por métodos tradicionales implica un alto costo, tiempo y disponibilidad de labora-torio, en tal sentido, utilizar modelos predictores toma significancia e importancia para predecir dichos valores. El objetivo de la investigación fue predecir propie-dades mecánicas de los suelos usando un software basado en algoritmos de redes neuronales artificiales. En este artículo se recopilo una base de datos de 289 valores de ensayos granu-lométricos, límites de consistencia, máxima densidad seca, óptimo contenido de humedad y CBR. La metodología corresponde a un enfoque cuantitativo, de tipo aplicada, nivel correlacional y diseño no experimental-transversal. En conclusión, se obtuvieron 4 modelos predictivos con el software Neural Tools, los cuales son: el modelo GRNN para la MDS, con un R2 del 75% y un RMS de 0.09%, modelo GRNN para el OCH, con un R2 de 78% y un RMS de 1.67%, modelo MLFN 2 nodos para el CBR95%MDS, con un R2 de 79% y un RMS de 5.42%, modelo MLFN 2 nodos para el CBR100%MDS, con un R2 de 82% y un RMS de 6.93%. Además, se realizó una comparación de valores obtenidos en el laboratorio de suelos vs RNA, donde los resultados muestran una variación mínima de 0.002% en la MDS, 0.06% en el OCH, 0.03% en el CBR 95%MDS y 0.04% en el CBR100%MDS.

Descripción

Palabras clave

Redes neuronales artificiales (RNA), Algoritmos predictivos, Máxima densidad seca (MDS), Óptimo contenido de humedad (OCH), Valor de soporte california (CBR)

Citación