Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana

dc.contributor.advisorLópez Gonzales, Javier Linkolk
dc.contributor.authorSolis Teran, Miguel Angel
dc.date.accessioned2025-03-14T13:58:13Z
dc.date.available2025-03-14T13:58:13Z
dc.date.embargoEnd2027-02-24
dc.date.issued2025-02-24
dc.description.abstractParticulate matter (PM) is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 are pollutant particles with a diameter of less than 10 micrometers. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru has been investigated in recent years. In this context, statistical analyses of PM10 data with forecast models can contribute to planning actions that can improve air quality. The objective of this work is to perform a statistical analysis of the availablePM10 data and evaluate the quality of time series classical models and neural networks for short-term forecasting. The Box-Jenkins models showed the best performance for short-term forecasting compared to the neural network models considered.
dc.description.escuelaEscuela Profesional de Ingeniería de Sistemas
dc.description.lineadeinvestigacionInteligencia artificial
dc.description.sedeLima
dc.formatapplication/pdf
dc.identifier.urihttp://repositorio.upeu.edu.pe/handle/20.500.12840/8559
dc.language.isoeng
dc.publisherUniversidad Peruana Unión
dc.publisher.countryPE
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectNeural network
dc.subjectModeling
dc.subjectArtificial intelligence
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.01.03
dc.titleModelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
dc.typeinfo:eu-repo/semantics/bachelorThesis
renati.advisor.dni46071566
renati.advisor.orcidhttps://orcid.org/0000-0003-0847-0552
renati.author.dni70413580
renati.discipline612076
renati.jurorCuellar Rodriguez, Immer Elias
renati.jurorAsin Gomez, Fernando Manuel
renati.jurorSaboyay Ríos, Nemias
renati.jurorOrrego Granados, David Leandro
renati.jurorLópez Gonzales, Javier Linkolk
renati.levelhttp://purl.org/pe-repo/renati/nivel#tituloProfesional
renati.typehttp://purl.org/pe-repo/renati/type#tesis
thesis.degree.disciplineIngeniería de Sistemas
thesis.degree.grantorUniversidad Peruana Unión. Facultad de Ingeniería y Arquitectura
thesis.degree.nameIngeniero de Sistemas

Archivos

Bloque original
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
Miguel_Tesis_Licenciatura_2025.pdf
Tamaño:
2.38 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Reporte de similitud.pdf
Tamaño:
962.16 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Autorización.pdf
Tamaño:
255.94 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: